
- •Вплив часу на параметри моделі Самуельсона - Хікса.
- •Моделі дискретної економічної динаміки.
- •Які системи вивчаються в теорії катастроф?
- •Модель рівноваги Вальраса.
- •B чому сутність моделі валютної паніки?
- •Які висновки можна зробити за моделями?
- •З чого складається властивість стійкості системи?
- •Дискретна й безперервна моделі попиту та пропозиції.
- •Моделі динаміки суспільного продукту і національного доходу.
- •Поняття про стабільність лінійних систем.
- •Які існують види фракталів?
- •Розв’язування диференційних рівнянь макроекономічної динаміки.
- •Які типи катастроф існують у двовимірному випадку?
- •Стабільність і рівновага в динамічних системах.
- •Розходження в поводженні моделі в. Леонтьєва при зміні структурних коефіцієнтів моделі.
- •Опишіть зміни капіталовкладень й інших показників у різних варіантах моделі Гудвіна.
- •Основні положення моделі Харрода - Домара.
- •Що є джерелом хаотичного поводження системи?
- •B чому відмінність поняття стійкості для стохастичних систем?
- •Проведіть аналіз дисипативних систем для макроекономіки.
- •Що затверджує теорема Ляпунова про стійкість?
- •Які методи застосовуються для виявлення хаотичного поводження?
- •B чому розходження й спільність підходів ідей різних шкіл?
- •Який зв'язок фракталів і хаосу?
- •B чому суть модифікацій моделей економічних циклів Гудвіна?
- •Які випадкові процеси називаються стійкими?
- •Що являють собою вузол, сідло, фокус, центр?
- •Які основні якісні характеристики складної системи? Дайте коротке пояснення кожній властивості.
- •Яким чином ураховуються виробничі цикли в моделях динаміки корисності споживчих благ?
- •B чому полягає розходження поводження й розвитку системи?
- •У чому полягає основне завдання якісного аналізу динамічних систем?
- •Сформулюйте основні положення синергетики.
- •B чому відмінність хаотичного поводження від випадкового?
- •Яка система називається динамічною? Якими складовими формально описується динамічна система?
- •Які виділяються типи стійкості стану системи?
- •Методи розв'язання дискретної й безперервної моделі попиту та пропозиції.
- •Поняття про допустимість стану й траєкторії моделі в. Леонтьєва.
- •Типи поведінки економічної системи.
- •Ha яких рівняннях заснована дана модель?
- •Які виділяються види диференціальних рівнянь 1-го порядку?
- •Взаємозв’язок акселератора з мультиплікатором.
- •Що мається на увазі під біфуркацією?
- •B чому суть моделі, запропонованої в. С. Михалевичем?
- •Які методи можна застосувати для управління хаотичними системами? b чому їхні переваги й недоліки?
- •Критерії та умови оптимізації.
- •Розв’язування задач оптимального управління.
- •Стійкість загальної рівноваги Вальраса.
- •Ha яких економічних законах засновані ефекти, отримані в моделі динаміки корисності споживчих благ?
- •Нормальна ціна в павукоподібній моделі.
- •Як у даній моделі відбивається платоспроможний споживчий попит?
- •Характеристики швидкості та інтенсивності зміни динамічного ряду.
- •B чому сутність технологічної концепції суспільної еволюції?
- •Рішення моделі в. Леонтьєва у випадку відсутності екзогенного споживання та його обліком.
- •B чому сутність стохастичних моделей економічної динаміки?
- •Яким образом може бути представлена потенційна функція системи при наявності катастрофи?
- •Для чого застосовуються фрактали в дослідженні складних систем?
- •Які види перетворень використовуються для опису динамічних характеристик систем?
- •Які причини появи синергетики і її часткових напрямів?
- •B чому розходження системного й синергетичного підходів до дослідження складних систем?
- •Найпростіша динамічна модель з мультиплікатором.
- •Основні припущення моделі в. Леонтьєва.
- •Які припущення використовуються в моделях економічних циклів Гудвіна?
- •У чому відмінності кількісних, структурних і якісних змін у системах?
- •Які явища в поводженні системи можуть указувати на наявність катастрофи?
- •Якою формальною моделлю можна видобразити грошові й товарні потоки?
- •Показники економічної динаміки.
- •Охарактеризуйте модель оцінки валютних потоків.
- •Що таке атрактори і які їх основні види?
- •Чим пояснюється наявність біфуркації в поводженні системи?
- •Модель зовнішньої торгівлі.
- •Що означає стійкість системи?
- •У чому відмінність загального й приватного розв’язання диференціального рівняння
- •Визначення найкращого темпу приросту споживання.
- •Закон збереження ресурсу й грошова форма збереження ресурсу.
- •Охарактеризуйте основні поняття самоорганізації?
- •B чому розходження понять «рівновага», «стійкість» і «стаціонарність»?
- •Проінтерпретуйте поняття граничний цикл і фазові переходи.
- •Наведіть приклади, що описують розвиток валютної паніки?
- •Як ураховується нестаціонарний випадок для даної моделі?
- •Який вид має звичайне диференціальне рівняння? Система диференціальних рівнянь?
- •Проведіть аналіз розв'язань в моделях економічних циклів.
- •Які існують різні механізми якісних змін?
- •Що являє собою траєкторія поводження системи?
- •Що являє собою рівноважний стан системи?
- •Багатофакорні моделі економічного зростання
- •Якими факторами визначається динаміка корисності споживчих благ у зазначених моделях?
- •Критерій стійкості Гурвіца.
- •Основні показники економічної динаміки при неперервних змінах.
- •Якими методами в даній моделі вирішується система диференціальних рівнянь?
- •Проведіть аналіз моделі Самуельсона - Хікса.
- •Які явища називаються фракталами?
- •Поняття технологічного темпу приросту випуску продукції.
- •Наведіть приклади швидких процесів в економіці.
- •Яким чином здіснюється якісний аналіз?
- •B чому проявляється катастрофа типу складка, зборка?
- •Як проводиться класифікація станів рівноваги для систем другого порядку?
- •Що являє собою функція катастрофи?
- •Які основні вимоги пред'являють до макромоделей і параметрів їхнього опису?
- •Що означає розв'язати диференціальне рівняння?
- •Предмет і завдання моделювання макроекономічної динаміки.
- •Моделі неперервних динамічних систем в економіці.
- •Що вивчає економічна динаміка?
- •Загальний вид рівнянь динамічної моделі в. Леонтьєва.
- •Макроекономічні динамічні виробничі функції.
Дайте характеристику трьом режимам поводження системи: рівноважному, перехідному й періодичному. Розрізняють три характерних типи поводження, або три режими, в яких може перебувати динамічна система: рівноважний, періодичний, перехідний. Рівноважний режим функціонування, або рівновага системи — це здатність її зберігати свій стан як завгодно довго (як за відсутності, так і за наявності зовнішніх збурювальних впливів). Під стійкістю системи розуміють здатність системи повертатися до стану рівноваги після виведення її з цього стану під впливом зовнішніх збурень. Стан рівноваги, до якого система здатна повертатися, називають стійким станом рівноваги. У складних кібернетичних системах залежно від характеру досліджуваних задач і типу збурень застосовують різні критерії стійкості. Одним із найбільш поширених є критерій стійкості за Ляпуновим. Стан системи z0 = z(t0) буде стійким за Ляпуновим для всіх
якщо для довільної заданої області допустимих відхилень цього стану
(область e) існує така область d, що траєкторія довільного руху, яка почалась в області d, не вийде за межі області e, що формально можна записати так:
Періодичний режим функціонування системи — це режим, коли протягом рівних проміжків часу система приходить до одного й того самого стану (потрапляє в точку фазового простору). Перехідним режимом називається рух динамічної системи з одного стійкого режиму (періодичного або рівноважного) до іншого. Швидкість перехідного процесу характеризує інерційність системи. Усі ці режими характеризують динаміку розвитку соціально-економічних систем.
Поняття про стабільність лінійних систем.
Під стійкістю лінійної системи розуміють властивість загасання перехідного процесу з часом, інакше кажучи, – наступна властивість власного (вільного) руху системи:
при
.
Ця
умова буде виконуватися тоді і тільки
тоді, коли всі корені
характеристичного
рівняння
мають від’ємні дійсні частини.
Якщо
ж хоча б один дійсний корінь
характеристичного
рівняння буде додатнім чи якщо хоча б
одна пара комплексних коренів буде
мати додатну дійсну частину, то перехідний
процес буде розбіжним
Якщо
в характеристичному рівнянні системи
є хоча б один нульовий корінь
чи
хоча б одна пара чисто уявних коренів
,
а всі інші корені мають від’ємні дійсні
частини, то будемо говорити, що система
знаходиться на границі
стійкості. Це
випливає з того, що нульовий корінь
можна розглядати як границю між
від’ємним і додатнім,
а чисто уявний корінь - як границюміж
комплексними коренями з від’ємною і
додатною дійсними
частинами. Поводженням системи
на границі стійкості цікавитися
небудемо, тому що працездатна система
автоматичного регулювання повинна
бути стійкою з запасом і не наближатися
до цієї границі.
Умова
стійкості лінійної системи виражається
у тім, що всі корені характеристичного
рівняння
повинні
розташовуватися в лівій півплощині
комплексної змінної р. Уявна
вісь
площини
коренів служить границею стійкості.
Можна виділити два типи границь стійкості лінійної системи, що характеризуються відповідно:
1) нульовим
коренем
;
2) парою
чисто уявних
коренів
;
У першому випадку границя стійкості називається аперіодичною, а в другому випадку — коливальною.
Які існують види фракталів?
Прийнято виділяти три види фракталів: геометричні, алгебраїчні й стохастичні. 1.Геометричні .Фрактали цього класу найбільш наочні. У двовимірному випадку їх отримують за допомогою деякої ламаної (або поверхні в тривимірному випадку), званої генератором. За один крок алгоритму кожен з відрізків, що складають ламану, замінюється на ламану-генератор, у відповідному масштабі. В результаті нескінченного повторення цієї процедури, виходить геометричний фрактал.
Один з таких фрактальних об'єктів - триадную криву Коха. Побудова кривої починається з відрізка одиничної довжини - це нульове покоління кривої Коха. Далі кожна ланка (в нульовому поколінні один відрізок) заміняється на утворюючий елемент. У результаті такої заміни виходить наступне покоління кривої Коха. Для отримання кожного наступного покоління всі ланки попереднього покоління необхідно замінити зменшеним утворюючим елементом. Крива n-го покоління при будь-якому кінцевому n називається предфракталом.
2) Алгебраїчні фрактали.
Це найбільша група фракталів. Отримують їх за допомогою нелінійних процесів в n-мірних просторах. Найбільш вивчені двовимірні процеси.
Якщо нелінійна динамічна система володіє декількома стійкими станами, то кожний стійкий стан володіє деякою областю початкових станів, з яких система обов'язково попаде в аналізовані кінцеві стани. Таким чином, фазовий простір системи розбивається на області тяжіння атракторів. Забарвлюючи області тяжіння різними кольорами, можна отримати колірний фазовий портрет цієї системи (ітераційного процесу). Міняючи алгоритм вибору кольору, можна отримати складні фрактальні картини з химерними кольоровими візерунками. Прикладом є множина Мандельброта.
3) Стохастичні фрактали.
Ще одним відомим класом фракталів є стохастичні фрактали, які виходять у тому випадку, якщо в ітераційнім процесі випадковим чином міняти якісь його параметри. При цьому виходять об'єкти дуже схожі на природні - несиметричні дерева, порізані берегові лінії і т. д. Двовимірні стохастичні фрактали використовуються при моделюванні рельєфу місцевості і поверхні моря.