
- •1.Определители, свойства, вычисление.
- •2.Матрицы. Виды матриц. Действия над матрицами. Вычисление обратной матрицы. Ранг и его вычисление.
- •3. Решение с.Л.А.У.
- •4. С.Л.А.У. С квадратичными матрицами и методы их решения (метод Крамера, Гаусса, матричный способ)
- •5. С.Л.А.У. С прямоугольными матрицами. Теорема Кронекера-Капелли.
- •7. Векторы. Линейные операции над векторами.
- •8. Проекции вектора на ось.
- •9. Скалярное произведение векторов. Свойства. Применение.
- •10. Векторное произведение векторов. Свойства. Применение.
- •11. Смешанное произведение векторов. Свойства. Применение.
- •12. Векторный базис. Координаты вектора. Разложение вектора по базису.
- •13.Условия коллинеарности, ортогональности, компланарности векторов.
- •14. Линейные операторы. Собственные значения и собственные векторы линейного оператора. Линейные модели обмена.
- •15. Квадратичные формы.
- •16. Полярная система координат.
- •17. Прямая на плоскости.
- •19.Кривые второго порядка (окружность, парабола, эллипс, гипербола).
- •20. Плоскость. Частные случаи расположения плоскости.
- •21. Взаимное расположение плоскостей.
- •22. Нормальное уравнение плоскости. Расстояние от точки до плоскости.
- •23. Прямая в пространстве. Угол между прямыми. Условия параллельности и перпендикулярности прямых.
- •24. Условие принадлежности двух прямых одной плоскости. Взаимное расположение прямой и плоскости.
- •25. Поверхности второго порядка.
19.Кривые второго порядка (окружность, парабола, эллипс, гипербола).
Аналитическая геометрия в пространстве.
Окружность.
Окружностью называется геометрическое место точек плоскости, равноудаленных от фиксированной точки, называемой центром окружности.
Получим уравнение окружности, если известны ее центр и радиус.
Окружность
радиуса Rс центром
в т.
имеет
уравнение
|
|
Эллипс.
Эллипсом называется геометрическое место точек плоскости, для каждой из которых сумма расстояний до двух данных точек той же плоскости, называемых фокусами эллипса, есть величина постоянная.
Пусть F1и F2 – фокусы эллипса. Начало O системы координат расположим на середине отрезка F1F2. Ось Ox направим вдоль этого отрезка, ось Oy – перпендикулярно к этому отрезку.
Пусть сумма расстояний от точки эллипса до фокусов равна 2a, а расстояние между фокусами – 2c. Тогда в выбранной системе координат эллипс имеет уравнение
|
Прямоуг-ник со стор 2а и 2в назыв-сяосновным прямоуг-ником гиперболы.
-
асимптоты.
Равносторонней гиперболой назыв такую гиперболу, где ее полуоси равны a=b.
Парабола.
Мн-во точек, кажд из котор одинаково удалена от данной точки, назыв фокусом и данной прямой, назыв директрисой. Расст-ние от фокуса F до директрисы назыв параметром(р>0).
;
.
FM- фокальный радиус т-ки М. О(0;0) – вершина параболы.
Т-ма:
-общурлин
2го порядка.
Уравнение определ либо окр-ть (А=С), эллипс (А*С>0), гиперболу (А*С<0), параболу(А*С=0). Возможный случай вырождения:
для эллипса(окр-ти)-в точку или мнимый эллипс(окр-ть);
для гиперболы – в пару пересек-сяпрямых;
для параболы-в пар парал-ных прямых.