Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
MATAN_shpora_Vosstanovlen.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
3.25 Mб
Скачать

7. Векторы. Линейные операции над векторами.

Вектором называется направленный отрезок. Если начало вектора находится в точке А, а конец – в точке В, то вектор обозначается АВ. Если же начало и конец вектора не указываются, то его обозначают строчной буквой латинского алфавита a, b, c ,…. Через BA обозначают вектор, направленный противоположно вектору АВ. Вектор, у которого начало и конец совпадают, называется нулевым и обозначается ō. Его направление является неопределенным.

Длиной или модулем вектора называется расстояние между его началом и концом. Записи |АВ| и |a| обозначают модули векторов АВ и a.

Векторы называются коллинеарными, если они параллельны одной прямой, и компланарными, если они параллельны одной плоскости.

Два вектора называются равными, если они коллинеарны, одинаково направлены и равны по длине.

К линейным операциям над векторами относятся:

1)умножение вектора на число (Произведением вектора a и числа α называется вектор, обозначаемый α∙a. (или наоборот a∙α), модуль которого равен |α a| =|α||a|, а направление совпадает с направлением вектора a, если α>0, и противоположно ему, если α< 0.)

а*(вс) = (ав)*с и а*(в + с) = ав + ас.

2)сложение векторов: (а + в) + с = а + (в + с):

Пр-ло -ка:

Пр-лопараллелогр-ма:

3)вычитание векторов: а – в = а + (-в):

8. Проекции вектора на ось.

Ось – прямая, им направление. Числов ось – прямая, с нач отсчета и единичным масштабом.

Проекции сущ 2 вида: геометр-кая и алгебр-кая.

Проекция вектора на ось равна произведению длины вектора на косинус угла между вектором и осью:

При умножении вектора на число его проекция на ось также умножается на это число.

Проекция суммы векторов на ось равна сумме проекций слагаемых:

Свойства проекций:1)пр на l= произв на cos м/у вектором и осью.

Проекция в-ра на ось положит-на (отриц-на), если век-р образует с осью острый (тупой) угол и равна 0, если этот угол прямой. Проекции равн век-ров равны м/у собой.

2)проекция суммы неск век-ров на одну и ту же ось = сумме их проекций на эту ось.

3)при умножении на число его проекция на ось также умнож-ся на это число:

.

9. Скалярное произведение векторов. Свойства. Применение.

Скалярным произведением векторов и называется число, равное произведению длин этих сторон на косинус угла между ними.

Если векторы заданы в координатной форме , ,

то их скалярное произведение вычисляется по формуле:

Свойства скалярного произведения:

1)

2) =0

3)

4)

5)

10. Векторное произведение векторов. Свойства. Применение.

Векторным произведением векторов и называется вектор , удовлетворяющий следующим условиям:

1) , где  - угол между векторами и ,

2) вектор ортогонален векторам и

3) , и образуют правую тройку векторов.

Обозначается: или .

Свойства векторного произведения векторов

1) ;

2) =0

4)

5) Если заданы векторы в декартовой прямоугольной системе координат с единичными векторами , то

-орты осей координат Ox, Oy, Oz, соответственно:

6) Геометрическим смыслом векторного произведения векторов является площадь параллелограмма, построенного на векторах и : .

Замечание: если требуется вычесть площадь параллелограмма, то нужно посчитать сначала ,

затем =

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]