- •1. Предмет и задачи дисциплины «Автоматика, автоматизация и асутп»
- •2. Структура и состав системы автоматического управления
- •3. Предмет и задачи теории автоматического управления
- •4. Классификация и структурные схемы сау
- •5. Методы математического описания сау. Передаточная функция
- •6.Характеристики типовых динамических звеньев сау
- •7.Анализ устойчивости сау. Критерии устойчивости
- •8.Показатели качества регулирования. Оптимальный переходный процесс
- •10.Характеристики интегрирующего и дифференцирующего динамических звеньев
- •11. Характеристики звеньев второго порядка и чистого запаздывания
- •Типовое звено второго порядка
- •12 Правила преобразования структурных схем сау
- •13 Автоматические регуляторы: классификция
- •14.Автоматические регуляторы: законы регулирования
- •15 Выбор типа регулятора и параметров его настройки
- •16.Исполнительные механизмы: назначение, классификация, особенности конструкции
- •17.Регулирующие органы: назначение, особенности конструкции, характеристики
- •18.Усилительно-преобразовательные устройства
- •19. Технологический процесс как объект управления (на примере своей специальности). Свойства объектов управления
- •20. Классификация объектов управления. Алгоритмы их функционирования
- •21.Методы построения математических моделей объектов управления
- •22.Алгоритм математического моделирования объектов управления (резервуар с жидкостью)
- •23. Классификация измерений
- •24.Погрешности измерений
- •25. Классификация средства измерений
- •26. Метрологические характеристики си.
- •27. Контактные средства измерения температуры
- •28. Манометрические термомтры.Пр-п действия,конструкция
- •29. Термопреобразователи сопротивления
- •30. Термоэлектрические термометры. Принцип д/ия, конструкция, материалы. Характеристики. Измерение термо-эдс.
- •31.Бесконтактные средства измерения температуры. Принцип действия, конструкции, характеристики.
- •32.Средства измерения давления. Принципы действия, конструкции, характеристики.
- •3. Электрические манометры
- •33.Средства измерения уровня. Принципы действия, конструкции, характеристики.
- •4. Измерение уровня сыпучих материалов
- •34.Средства измерения перемещений и скорости. Принципы действия, конструкции, характеристики.
- •35.Средства измерения массы. Принципы действия, конструкции, характеристики.
- •36.Средства измерения расхода жидкостей и газов. Принципы действия, конструкции, характеристики.
- •37.Средства измерения расхода сыпучих материалов. Принципы действия, конструкции, характеристики.
- •38.Средства измерения плотности. Принципы действия, конструкции, характеристики.
- •39.Средства измерения влажности. Принципы действия, конструкции, характеристики.
- •40.Средства измерения вязкости. Принципы действия, конструкции, характеристики.
- •41. Средства анализа концентрации и состава смесей. Принципы действия,
- •1. Газоанализаторы.
- •2. Анализаторы жидкостей.
- •42 Функциональная схема автоматизации
- •43.Автоматизация процессов перемещения жидкостей
- •44.Автоматизация теплообменников
- •45.Автоматизация печей
- •46.Автоматизация барабанной сушилки
- •47.Автоматизация башенной распылительной сушилки
- •48.Автоматизация процесса сушки в кипящем слое
- •49.Современные асутп; функции, структура, обеспечение
- •50 Промышленные контролеры
- •51.Scada-системы.
- •Предмет и задачи дисциплины «Автоматика, автоматизация и асутп»
- •Структура и состав системы автоматического управления
47.Автоматизация башенной распылительной сушилки
Целью управления является обеспечение постоянной влажности шликера на входе при стабильном гранулометрическом составе. АСР состоит из нескольких контуров:
1 – контроль температур в разных зонах БРС (контур 1),
2 – регулирование подачи газа, в зависимости от влажности шликера на выходе. Так как оперативно измерить влажность шликера на выходе затруднительно, то ее определяют косвенным способом по температуре отходящих дымовых газов (2-1). При ее изменении регулятор (2-2) изменяет подачу топлива.
3 – стабилизация массового расхода (возмущение – изменение влажности, около 40%), т.к. размеры частиц порошка зависят от давления в трубопроводе, то регулятор (5-1) осуществляет необходимую коррекцию.
4 – регулятор (4-3) служит для обеспечения требуемого избытка кислорода для оптимального горения.
5 – регулирование аэродинамики (5-1)
6 – позволяет повысить качество регулирования путем введения коррекции по влажности материала на выходе (7-1).
48.Автоматизация процесса сушки в кипящем слое
В сушилках с кипящим слоем процесс сушки продолжается до нескольких минут, в то время как сушильный агент (воздух) проходит через сушилку за доли секунды.
Влажный материал подается из бункера шнековым питателем в сушилку 4, где он псевдоожижается воздухом, нагреваемым в топке 2 за счет сжигания газа. Воздух отсасывается через циклон 5 воздуходувкой 6, а высушенный материал выводится из сушилки. Установлено, что в псевдоожиженном слое температура однозначно определяет остаточную влажность частиц твердого материала при фиксированном времени их пребывания в аппарате и является основной регулируемой величиной. Ее можно поддерживать, меняя расход высушиваемого материала, а также расход или температуру сушильного агента. Возможно применение любого из этих вариантов.
Использование в качестве регулирующего воздействия расхода влажного материала требует установки дополнительного бункера для этого материала между предыдущей технологической установкой и сушилкой. При использовании же расхода или температуры воздуха следует иметь в виду, что на изменение этих величин наложены ограничения по максимуму и минимуму.
Температура в слое псевдоожиженного материала поддерживается регулятором, который управляет подачей влажного материала в сушилку. Возрастание температуры в слое свидетельствует о понижении среднего значения остаточной влажности частиц твердого материала. Реагируя на это, регулятор увеличивает скорость вращения шнека питателя, что приводит к увеличению подачи влажного материала и снижению температуры в слое.
Поддержание постоянства температуры воздуха на входе в сушилку обеспечивается с помощью АСР изменяющей подачу топливного газа в топку. Регулятор соотношения устанавливает подачу первичного воздуха в топку в количестве, необходимом для полного сгорания топливного газа. Расход горячего воздуха, подаваемого в сушилку под распределительную решетку и псевдоожижающего частицы высушиваемого материала, стабилизируется изменением подачи вторичного воздуха в смесительную камеру 3.
Заданное разрежение в сушилке регулируется с помощью клапана, установленного на линии отработанного сушильного агента. Материальный баланс объекта по твердому материалу соблюдается за счет поддержания постоянства уровня псевдоожиженного материала в сушилке с помощью регулятора, управляющего отводом сухого материала из аппарата. Уровень псевдоожиженного материала измеряется гидростатическим дифманометрическим уровнемером по перепаду давления в сушилке. Изменение расхода сухого материала из аппарата обеспечивается изменением проходного сечения задвижки с пневматическим приводом, работающим от регулятора уровня.
В сушилках с кипящим слоем целесообразно применять экстремальные системы регулирования. В качестве критерия оптимальности можно, например, выбрать количество влаги W, удаляемой из твердого материала в единицу времени:
где F – расход сухого материала; Мн и М к – начальная и конечная влажность материала.
Количество влаги W рассчитывается с помощью вычислительного устройства, выходной сигнал которого направляется на экстремальный регулятор, изменяющий расход сушильного агента. При этом необходимо предусмотреть ограничения по минимальной влажности сухого продукта, а также по минимальному и максимальному расходам сушильного агента. Границы изменения расходов сушильного агента определяют областью существования псевдоожиженного слоя частиц твердого материала.
