- •1. Предмет и задачи дисциплины «Автоматика, автоматизация и асутп»
- •2. Структура и состав системы автоматического управления
- •3. Предмет и задачи теории автоматического управления
- •4. Классификация и структурные схемы сау
- •5. Методы математического описания сау. Передаточная функция
- •6.Характеристики типовых динамических звеньев сау
- •7.Анализ устойчивости сау. Критерии устойчивости
- •8.Показатели качества регулирования. Оптимальный переходный процесс
- •10.Характеристики интегрирующего и дифференцирующего динамических звеньев
- •11. Характеристики звеньев второго порядка и чистого запаздывания
- •Типовое звено второго порядка
- •12 Правила преобразования структурных схем сау
- •13 Автоматические регуляторы: классификция
- •14.Автоматические регуляторы: законы регулирования
- •15 Выбор типа регулятора и параметров его настройки
- •16.Исполнительные механизмы: назначение, классификация, особенности конструкции
- •17.Регулирующие органы: назначение, особенности конструкции, характеристики
- •18.Усилительно-преобразовательные устройства
- •19. Технологический процесс как объект управления (на примере своей специальности). Свойства объектов управления
- •20. Классификация объектов управления. Алгоритмы их функционирования
- •21.Методы построения математических моделей объектов управления
- •22.Алгоритм математического моделирования объектов управления (резервуар с жидкостью)
- •23. Классификация измерений
- •24.Погрешности измерений
- •25. Классификация средства измерений
- •26. Метрологические характеристики си.
- •27. Контактные средства измерения температуры
- •28. Манометрические термомтры.Пр-п действия,конструкция
- •29. Термопреобразователи сопротивления
- •30. Термоэлектрические термометры. Принцип д/ия, конструкция, материалы. Характеристики. Измерение термо-эдс.
- •31.Бесконтактные средства измерения температуры. Принцип действия, конструкции, характеристики.
- •32.Средства измерения давления. Принципы действия, конструкции, характеристики.
- •3. Электрические манометры
- •33.Средства измерения уровня. Принципы действия, конструкции, характеристики.
- •4. Измерение уровня сыпучих материалов
- •34.Средства измерения перемещений и скорости. Принципы действия, конструкции, характеристики.
- •35.Средства измерения массы. Принципы действия, конструкции, характеристики.
- •36.Средства измерения расхода жидкостей и газов. Принципы действия, конструкции, характеристики.
- •37.Средства измерения расхода сыпучих материалов. Принципы действия, конструкции, характеристики.
- •38.Средства измерения плотности. Принципы действия, конструкции, характеристики.
- •39.Средства измерения влажности. Принципы действия, конструкции, характеристики.
- •40.Средства измерения вязкости. Принципы действия, конструкции, характеристики.
- •41. Средства анализа концентрации и состава смесей. Принципы действия,
- •1. Газоанализаторы.
- •2. Анализаторы жидкостей.
- •42 Функциональная схема автоматизации
- •43.Автоматизация процессов перемещения жидкостей
- •44.Автоматизация теплообменников
- •45.Автоматизация печей
- •46.Автоматизация барабанной сушилки
- •47.Автоматизация башенной распылительной сушилки
- •48.Автоматизация процесса сушки в кипящем слое
- •49.Современные асутп; функции, структура, обеспечение
- •50 Промышленные контролеры
- •51.Scada-системы.
- •Предмет и задачи дисциплины «Автоматика, автоматизация и асутп»
- •Структура и состав системы автоматического управления
22.Алгоритм математического моделирования объектов управления (резервуар с жидкостью)
Составление математического описания объектов начинают с нахождения уравнений его материального или энергетического балансов за бесконечно малый промежуток времени dt, выявления кинетических закономерностей, гидродинамических условий и т.п. Нелинейные дифференциальные уравнения линеаризуют.
Далее от абсолютных значений входных и выходных величин переходят к их приращениям. Последние, в свою очередь, заменяют безразмерными величинами, которые представляют собой отношения абсолютных приращений этих величин к их произвольно выбранным базисным значениям. В качестве таковых обычно используют значения величин в равновесном состоянии до нанесения возмущающего воздействия.
Полученные уравнения приводят к общепринятой форме путем группирования в левой части всех членов, содержащих выходную величину объекта и ее производные, а в правой части – всех членов, содержащих входную величину объекта и ее производные.
Резервуар c жидкостью.
1
.
Пусть вода подается в резервуар с
расходом Gп и откачивается из него
насосом с производительностью Gр.
Входными величинами являются Gп и Gр, а
выходная величина – уровень в емкости.
В равновесном состоянии:
Gр0= Gп0= G 0 (1)
и уровень не изменяется. Неравенство входного и выходного потоков приведет к изменению объема воды в резервуаре:
,
если площадь сечения емкости постоянна (V = SH), то:
.
2. Пусть вода в резервуар подается насосом с расходом Gп , а вытекает самотеком Gр.
По аналогии с рассмотренным выше случаем:
.
23. Классификация измерений
Измерение – экспериментальное нахождение размера физ. величины с помощью спец-го технического средства (средства измерений).
Суть измерения: получение колич-ой информации о параметрах технол-го процесса, путем сравнения текущего значения пар-ра с некоторым его значением приятым за 1.
В основе каждого измер. лежит метод измерения. т.е. совокупность приемов использования, принципов и ср-в измерения.
Принцип измерения – совок. физ. явлений, на кот. основано измерение.
Единство измерений (ЕИ) – состояние измерений, при кот. рез-ты выражаются в узаконенных единицах, а погрешности рез-ов измерения известны и с заданной вероятностью не выходят за устан-ые пределы. ЕИ надо для того, чтоб м.б. сопоставлять рез-ты измерений выполненных разными измерит. устр-ми в разных местах и в разное вр.
Измерения бывают:
1. Статические, при кот. измеряемая величина остается постоянной во времени;
2. Динамические, при кот. измеряемая величина изменяется в процессе измерения.
По числу наблюдений:
- измерения с однократным наблюдением;
- измерения с многократным наблюдением.
Измерения с однократным наблюдением использ-ся, если систематические погрешности (от приборов) явл-ся определяющими и они намного больше случ-ых погрешностей. Примен-ся в системах автом-го контроля или в системах управления технологическими процессами; хар-ся высокими скоростями.
Измерения с многократным наблюдением применяют, если определяющей является случайная погрешность. Ипольз-ся в научных исследованиях. Отлич-ся высокой точностью, но большей продолжительностью. Погрешность оценивается статистически.
По способу получения результата:
- прямые – когда искомое значение физ. величины находят из опыта непосредственно (измер-ют массу весами);
- косвенные - когда искомое значение физ. величины находят на основании прямых измерений других физ. величин, функционально связанных с искомой величиной.
Y = f (Х1, Х2, Х3…ХN)
Например, измерение плотности однородного тела по его массе и объему или электрического сопротивления по падению напряжения и силы тока (по з-ну Ома).
Методы измерений:
1. М-д непосредственной оценки (отсчета) – м-д измерений, в кот. значение величины определяют непосредственно по отсчетному устр-ву измерительного прибора прямого д/ия (в кот сигнал измеренной инф-ции передается в 1-ом направлении с входа на выход). Пример: взвешивание груза на пружинных весах. Ср-ва измерения реализующие данный метод просты и дёшевы. М-д хар-ся быстротой, но точность измерений невысока.
2. М-д сравнения с мерой – когда измеряемую величину сравнивают с величиной воспроизводимой мерой. При этом различают:
2.а) м-д противопоставления – измеряемая величина и величина воспр-мая мерой одновременно возд-ют на прибор сравнения, с пом. которого устанавливается соотношение между этими величинами. Если рез-ат сравнения доводится до нуля, то м-д наз. нулевым, иначе – диф-ным.
2.б) м-д замещения – измеряемую величину замещают известной величиной воспроизводимой меры. Эти величины действуют на устройства сравнения попеременно.
