
- •1.Демидова л.П. Методы решения текстовых залач /л.П. Демидова, а.П. Тонких,------м.: Университет, 2000. --356 с.
- •2.Тонких, а.П. Математика.: Кн.1./ а.П. Тонких.
- •3.Дрозд, в. Л. Научись решать задачи!/ в.Л.
- •Параграф 1. Происхождение и сущность текстовых задач
- •Разные подходы к определению понятия "задача"
- •1.Специфика учебной задачи.
- •2. Концепция в.В. Давыдова.
- •3. Концепция авторов программы «Школа-2100».
- •Всебщими для математики являются отношения “больше”, “меньше”, “равно”. На аснове их в.В.Давыдов предллагает следующую последова-тельность изучения чисел и действий над ними..
- •1. Сравнение конкретных величин сначала “на глаз”, а затым наложением, при-ложением, переливанием и т.Д.
- •2. Моделирование величин отрезками. Сравнение величин с помощью отрезков. Например.:
- •5.Введение мерак по измерению величин. Моделирование величин отрезками. Измерение отрезков меркой и появление последовательности целых неотрицательных чисел..
- •6. Переход к меньшей мерке и введение действия умножения.
- •8. С помощью моделирования и перехода к меркам в 10 раз больших (меньших) за данную вводятся также десятичные дроби, проценты и действия над ними.
- •Текстовые задачи. Способы их поиска и исследования решения
- •Параграф 2. Приёмы поисковой леятельности
- •Параграф 3. Способы проверки решения задач
- •1.Установлением соответствия между числами, полученными в результате решения задачи, и данными в условии задачи.
- •2. Составление и решение задачи, обратные данной.
- •3.Решение задачи различными способами.
- •4. Решение задачи различными методами.
- •5. Прикидкой (грубой проверкой).
- •Параграф 4. Способы исследования задачи
- •1) Является задачей, 2) не является задачей;
- •1) Любая задача состоит: 1) из условия и вопроса, 2) только из вопроса, в) только из условия.
- •4.Загвязинский, в. И.. Методология и методы психолого-педагогического исследования /в. И. Загвязинский. -– м.: Ростов н/д, 2005. – . 198 с.
- •5.Лурия, а. Р. Нейропсихологический анализ
- •Параграф 1. Происхождение и сущность текстовых задач
- •Разные подходы к определению понятия "задача"
- •5.Увядзенне мерак па вымярэнню велічынь. Мадэляванне велічынь адрэзкамі. Вымярэнне адрэзкаў меркай і паяўленне паслядоўнасці цэлых неадмоўных лікаў.
- •6. Пераход да меншай меркі і ўвядзенне дзеяння множання.
- •8. З дапамогай мадэлявання і пераходу да мерак у 10 разоў большых (меншых) за дадзеную ўводзяцца таксама дзесятковыя дробы, працэнты і дзеянні над імі
- •1.Качалко,в.Б. Поисково-исследовательская технология началь-ного обучения математике /в.Б. Качалко.-- Мозырь: уо мгпу им. И.П. Шамякина, 2008.-149 с.
- •2.Загвязинский,в.И. Методология и методика дидактического исследования / в.И. Заг-вязинский.–м.:Высшая школа, 2002. - 136 с.
- •Параграф 3. Приёмы поисковой леятельности
- •Параграф 4. Способы проверки решения задач
- •1.Установлением соответствия между числами, полученными в результате решения задачи, и данными в условии задачи.
- •2. Составление и решение задачи, обратные данной.
- •3.Решение задачи различными способами.
- •4. Решение задачи различными методами.
- •5. Прикидкой (грубой проверкой).
- •Параграф 5. Способы исследования задачи
- •1) Является задачей, 2) не является задачей;
- •1) Любая задача состоит: 1) из условия и вопроса, 2) только из вопроса, в) только из условия.
- •Решение задач на движение в 3-4 классах
- •Мониторинг поисково-исследовательской деятельности учащихся при выполнении разноуровневых заданий
- •1.Специфика учебной задачи.
- •2. Концепция в.В. Давыдова.
- •3. Концепция авторов программы «Школа-2100».
- •Всебщими для математики являются отношения “больше”, “меньше”, “равно”. На аснове их в.В.Давыдов предллагает следующую последова-тельность изучения чисел и действий над ними..
- •1. Сравнение конкретных величин сначала “на глаз”, а затым наложением, при-ложением, переливанием и т.Д.
- •2. Моделирование величин отрезками. Сравнение величин с помощью отрезков. Например.:
- •5.Введение мерак по измерению величин. Моделирование величин отрезками. Измерение отрезков меркой и появление последовательности целых неотрицательных чисел..
- •6. Переход к меньшей мерке и введение действия умножения.
- •8. С помощью моделирования и перехода к меркам в 10 раз больших (меньших) за данную вводятся также десятичные дроби, проценты и действия над ними.
- •Лекция 3 модель постановки и решения учебной математи-ческой задачи. Мониторинг процесса поиска и исследования решения задачи План
- •1) Вспомни, какие задачи ты решал на состав чисел?
- •2) Как можно по-разному разложить 3 яблока на две тарелки? и др.
- •1) Взять две группы предметов и пронаблюдать, как изменяется количество предметов в них при перемещении предметов из одной группы в другую : а) по одному, б) по двум предметам и т.Д.
- •2) Рассмотреть разные расстановки в две группы трёх предметов и др.
- •1.Задачи, когда в продукте удаляется неко-торая часть одного вещества с сохранением постоянного количества другого вещества.
- •0,16 От 735 г: 735*0,16(г). Зная количество чистого йода в новом 10%-м растворе нахо-дим число,10% которого составляет
- •3. Третий вид задач.- задачи на нахождение процентного содержания одного из веществ в данном продукте в процессе его преоб-разования.
- •Задачи на кратное сравнение двух разностей.
- •2) Внутри красного, не вне
- •3) Внутри синего, не вне
- •4) Вне обоих обручей.
- •Аналитическиий способ разбора задачи.
- •Синтетическиий способ разбора задачи
- •2 .Краткая запись.
- •3 .Чертёж.
- •4.Таблица.
- •8. Геометрический способ решения задачи Используя чертёж,
- •9. Способы дополнительной исследовательской работы над исходной или над задачей с измененным текстом после её решения [1].
- •9.1. Выбор наиболее рационального способа решения.
- •9.2. Объяснение выражений, составленных по условию задачи.
- •1) Километрами в час; 2) километрами в минуту;
- •3) Метрами в минуту; 4) милями в час.
- •1) Часах, 2) минутах, 3) секундах, 4) годах.
- •Сложение скоростей;2) вычитание скоростей; 3)сложение расстояний; 4) вычитание расстояний.
- •1. Загвязинский, в.И.. Методология и методы психолого-педагогического исследования/в.И..Загвязинский. -– м.: Ростов н/д, 2005. – . 198 с.
- •2..Качалко,в.Б. Поисково-исследовательская технология начального обучения математике /в.Б. Качалко.- Мозырь: уо мгпу им. И.П. Шамякина:.-- 2008, -- 142 с
- •2 Т 156 кг картофеля: с первого – 1000 кг, со второго –
- •4.) Качалко, в.Б. Поисково-исследовательская технология начального обучения математике/ в.Б. Качалко.—Мозырь:мгпу им. И.П. Шамякина, 2008.—126 с
- •4.) Качалко, в.Б. Поисково-исследовательская технология начального обучения математике/ в.Б. Качалко.—Мозырь:мгпу им. И.П. Шамякина, 2008.—126 с
- •Учебная программа для специальности:
- •Факультет дошкольного и начального образования
- •Раздел 11. Практикум по решению задач
- •2..1. Общие вопросы методики решения текстовых задач
- •2.1.3. Общие способы разбора текстовой задачи
- •2.2.Решение текстовых задач разными способами
- •2.3.3. Способы применеия алгебраического метода для нахождения арифметического пути решения текстовых задач разных типов.
- •1.Методика начального обучения математике/Под ред. Столяра а.А., – Мн.: Выш. Школа, 1988.-254 с.
- •Раздел 1. Методика преподавания математики
- •Дополнения и изменения к учебной программе по изучаемой дисциплине на _2010 /2011 учебный год
- •Раздел 11. Практикум по решению задач
- •2..1. Общие вопросы методики решения текстовых задач
- •2.1.3. Общие способы разбора текстовой задачи
- •2.2.Решение текстовых задач разными способами
- •2.3.3. Способы применеия алгебраического метода для нахождения арифметического пути решения текстовых задач разных типов.
- •1.Методика начального обучения математике/Под ред. Столяра а.А., – Мн.: Выш. Школа, 1988.-254 с.
- •Литература Основаая
- •Дополнительная
- •3) По таблицам больших чисел при
- •1.Засваенне ўмовы і пытання (патрабавання) задачы:
- •7.6.4. Па табліцы:
- •7.6.5. Па схеме:
- •7.6.6. Па пытанню да задачы
- •- Каким действием Почему?
- •Литература Основаая
- •Дополнительная
Аналитическиий способ разбора задачи.
Синтетическиий способ разбора задачи
ТЕОРИЯ И ПРАКТИКА ОБУЧЕНИЯ РЕШЕНИЮ ТЕКСТОВЫХ ЗАДАЧ НА ОСНОВЕ ПОИСКОВО-ИССЛЕДОВАТЕЛЬСКОЙ ТЕХНОЛОГИИ ИЗУЧЕНИЯ
Аналитический способ разбора задачи
Любая составная задача сводится к решению простых задач, из которых она составлена. При поиске способа решения можно идти от основного вопроса задачи. В этом случае разбор задачи мы называем аналитическим. Он находит наибольшее применение в практике работы учителей начальных классов .
Для решения составляем первую простую задачу, начиная с вопроса составной задачи. Искомое составной задачи принимаем за искомое первой простой задачи.
Ставим вопрос, какая пара данных из составной задачи необходима, зная которую, можно было бы определить искомое первой простой задачи.
Так как численные значения одного, а иногда и обоих намеченных данных неизвестны, то составленную таким образом простую задачу решить нельзя: можно лишь указать действие, которое нужно произвести над выбранными данными, чтобы определить искомое.
Данное численное, значение которого неизвестно, представляет собой одно из неявных искомых составной задачи и должно стать искомым для следующей простой задачи.
Процесс выделения простых задач продолжается до тех пор, пока не дойдем до задачи, у которой численные значения обоих данных известны из условия основной задачи.
Лишь после составления последней составной задачи можно приступить к решению этих задач, начиная с последней и постепенно переходя к первой. Решение первой задачи будет вместе с тем и решением составной задачи.
Рассмотрим этот способ на поиске решения задачи на совместную работу.
Для школы нужно изготовить 180 рам. Первая бригада может изготовить их за 36 дней, а вторая - за 45 дней. За сколько дней изготовят две бригады рамы, работая совместно?
Моделирование задачи
|
Выработка за день |
Количество дней |
Вся работа |
Первая бригада |
? рам |
36 |
180 рам |
Вторая бригада |
? рам |
45 |
180 рам |
Обе бригады |
? рам |
? |
180 рам |
Сначала проводится подготовительная работа. Выясняется, что две бригады, работая вместе, выполнят всю работу за количество дней меньшее, чем 45 дней и даже 36 дней.
В дальнейшем рассуждения ведутся по схеме
Можно
ли сразу ответить на вопрос задачи?
Почему нельзя?
Что для
этого нужно знать?
Решение:
1) 180 : 36 = 5 (р.) – изготовит 1-ая бригада за один день.
2) 180 : 45 = 4 (р.) – изготовит 2-ая бригада за один день.
3) 5 + 4 = 9 (р.) – изготовят обе бригады за один день.
4) 180 : 9 = 20 (дн.) – за столько дней, работая вместе, бригады изготовят все рамы. Ответ: обе бригады выполнят работу за 20 дней.
\
Синтетический способ разбора задачи
Из ряда данных составной задачи выбирают наиболее подходящую пару данных, находящихся между собой в той или иной зависимости
По этим данным и их зависимости устанавливают искомое и таким образом образуют первую простую задачу.
Составленную задачу решают.
Найденное искомое первой задачи становится данным для составной задачи и должно войти в качестве данного в одну из последующих простых задач.
Продолжают этот процесс составления и решения простых задач до тех пор, пока не дойдут до простой задачи, вопрос которой совпадает с вопросом составной задачи.
Решение последней простой задачи будет, вместе с тем, и решением составной задачи.
Этот способ является менее трудным по сравнению с аналитическим.
Применяется при разборе задачи учителями в дополнение к первому.
Рассмотрим этот способ на конкретной задаче на прямо пропорциональную зависимость. Подготовитель-ной работой будет повторение зависимости изменения произведения от увеличения первого, а затем и второго множителя в несколько раз.
Задача. 3 курицы за 3 дня снесли 3 яйца. Сколько яиц снесут 12 курей за 12 дней, если они будут нести такое же количество яиц за один и тот же промежуток времени? Количество снесенных яиц прямо пропорционально количеству дней и курей
Моделирование задачи
Первый случай Второй случай
Количество курей 3 12
Количество дней 3 12
Количество яиц 3 ?
СТАВИМ ВОПРОСЫ Что можно узнать
по
данным
3 и 12 куриц?
Что можно узнать
по
данным 3 и 12 дней?
Что можно узнать
по
найденным кратным
отношениям?
При
этом способе идут от
данных к вопросу задачи.
Решение:
12 : 3 = в 4 раза больше курей во втором случае.
12 : 3 = в 4 раза больше дней во втором случае.
4 4 = в 16 раз куры снесут больше яиц во втором случае.
3 16 = 48 (яиц) – снесут куры во втором случае.
Ответ: 12 курей за 12 дней снесут 48 яиц.
Аналитический и синтетический способы поиска решения текстовой задачи дополняют друг друга и практически выполняются вместе. В практике работы учителя по разбору любой текстовой задачи аналитический и синтетический способы объединяют в аналитико-синтетический способ разбора, осуществляемый в двух вариантах:
когда рассуждения идут от главного вопроса задачи с добавлением вопроса « А можнем ли это узнать?»;
когда рассуждения ведутся от данных задачи с добавлением вопроса «А нужно ли это узнавать для ответа на главной вопрос задачи ?
РАШЭННЕ ЗАДАЧ НА ЗНАХОДЖАННЕ
ДРОБУ АД ЛІКУ І ЛІКУ ПА ЯГО ДРОБУ
Задачы гэтых відаў зручна рашаць па іх мадэлях на адрэзках. Па кожнай канкрэтнай задачы на адрэзку-мадэлі паказваецца:каб знайсці дроб ад ліку, патрэбна лік падзяліць на назоўнік, а потым дзель памножыць на лічнік; каб знайсці лік па яго дробу, патрэбна лік падзяліць на лічнік, а потым дзель памножыць на назоўнік. Задача. Агарод прамавугольнай формы мае шырыню 24 м, што складае 3/4 яго даўжыні. 2/3 усёй плошчы агарода засадзілі бульбай. Колькі квадратных метраў плошчы засадзілі бульбай? Знаходзім лік, 3/4 частка якога складае 24 м.
¾
складае 24 м
4/4 - ? м 1/4 частка ад ліку 24 м складае 24:3=8(м).Увесь лік складае 4/4 часткі ( у 4 разы больш, чым 8м): 8·4=32(м). Таму даўжыня агарода 24:3·4=32(м), а плошча агарода прамавугольнай формы будзе 32·24=768 (м2). Далей знаходзім 2/3 ад ліку 768 (м2).
3/3 скл. 768 м2 1/3 ад ліку768м2: 768:3=256(м2)
2/3
? м2
2/3 складзе 256 · 2 = 512 (м2). Плошча, засаджаная бульбай, будзе складаць 768 : 3 · 2 = 512 (м2). Адказ: бульбай засаджана 512 м2.
МЕТОДЫКА НАВУЧАННЯ РАШЭННЮ СТАНДАРТНЫМ ЗАДАЧАМ
МЕТОД ПРЕДПОЛОЖЕНИЯ В РЕШЕНИИ ТЕКСТОВЫХ ЗАДАЧ
Этот метод в малой степени используется младшими школьниками. Покажем, что им доступен поиск решения текстовой задачи на основе метода предположения на примере: Задача 1. Возле школы стояли такси и велосипеды. У них было вместе 14 колёс. Сколько возле школы стояло такси и сколько велосипедов, если всего у них 5 рулей?
Обычно задача всеми сразу решается способом подбора. Однако он в математике играет лишь эвристическую роль.
К-во такси |
У них колёс |
К-во велосипед. |
У них колёс |
Всего колёс |
1 |
4 |
4 |
8 |
12 |
2 |
8 |
3 |
6 |
14 |
Задача имеет несколько способов решения.
Первый способ
Предположим, что возле школы стояло все 5 такси, тогда решением будет:
4 5 = 20 (к.) Увеличение общего количества колёс
20 – 14 = 6 (к.) обусловлено тем, что у такси на 2
4 – 2 = 2 (к.) колеса больше, чем у велосипеда.
6 : 2 = 3 (вел.)
5 – 3 = 2 (такси). Ответ: возле школы стояло 2 такси и 3 велосипеда. Второй способ
Предположим, что возле школы стояло все 5 велосипеда, тогда решением будет:
2 5 = 10 (к.) Уменьшение общего количества колёс
14 – 10 = 4 (к.) обусловлено тем, что у велосипеда на
4 – 2 = 2 (к.) 2 колеса меньше, чем у такси.
4 : 2 = 2 (такси)
5 – 2 = 3 (вел.)
Ответ: возле школы стояло 2 такси 3 велосипеда.
Задача 2. Бідон з малаком важыць 44 кг, а без малака - на 36 кг лячэй.Колькі важаць бідон і малако паасобку?
Задачу
зручна рашаць мадэляваннем яе адрэз-камі
і шляхам ураўнівання па розных велічынях.
Б. - !---! ? кг 44кг
М.- !---!------------36 кг ------------! -? кг
Спосаб 1 - ураўніванне па масе малака
Б. - !---!.....................................!кг 44+36(кг)
М.- !---!------------36 кг ------------! -? кг
1) 44+36 = 80 (кг) -двайная маса малака
2) 80:2 = 40 (кг) - маса малака ў бідоне
3) 44-40 = 4 (кг) - маса пустога бідона
Спосаб 2 - ураўніванне па масе пустога бідона .
Б. - !---! ? кг 44-36(кг)
М.- !---!............36 кг...................!-? кг
1) 44-36 = 8 (кг)- двайная маса пустога бідона
2) 8 : 2 = 4 (кг) - маса пустога бідона
3) 44-4 = 40 (кг) - маса малака ў бідоне
Адказ: маса малака – 40 кг, а бідона - 4 кг
Задача 3. Гарбуз у 3 разы цяжэйшы за дыню.
Іх агульная маса - 12кг. Якая маса гарбуза і дыні паасобку? Задачы 2, таксама 3 зручна рашаць на часткі з прымяненнем мадэлявання іх адрэзкамі.
М.д. - !---!
1 ч. 12 кг
М.г. - !---!---!---! 3 ч.
1) 1+3=4 (ч.) складае маса дыні і гарбуза
2) 12:4=3 (кг)- маса дыні (1 частка)
3) 3·3= 9 (кг) - маса гарбуза (3 часткі)
Адказ: маса дыні 3кг, а гарбуза - 9кг.
Задача 4. Гарбуз у 3 разы або на 6 кг цяжэйшы за дыню. Якая маса дыні і гарбуза паасобку?
М.г. - !---!---!---! -?кг
М.д. - !---! 2ч. або 6 кг -?кг
1) 3 - 1 = 2 (ч.) складаюць 6 кг
2) 6 :2 = 3 (кг) - маса дыні (1 частка)
3) 3·3 = 9 (кг) - маса гарбуза (3 часткі)
Задача 5. Турыст на байдарцы праехаў шлях па цячэнню ракі са скорасцю 14 км/гадз., а супраць цячэння той жа шлях - са скорасцю 8 км/гадз. Якая скорасць цячэння ракі і скорасць руху байдаркі? Задача 4 рашаецца шляхам мадэлявання руху адрэкамі: па цячэнню ракі, калі прыбаўляецца скорасць цячэння да скорасці байдаркі, і супраць цячэння, калі аднімаецца скорасць цячэння ад скорасці байдаркі. З чарцяжу бачна, што пры складанні лікаў 14 і 8 атрымоўваецца двайная скорасць байдаркі, а пры адніманні гэтых лікаў двайная скорасць цячэння ракі. Адкуль існуюць два спосабы рашэння:
Спосаб 1:
1) (14+8):2=11(км/гадз.) - скорасць байдаркі
2) 14-11= 3 (км/гадз.) - скорасць цячэння ракі
Спосаб 2:
1) (14-8):2=3(км/гадз.)-скорасць цячэння ракі
2) 3+8= 11 (км/гадз)- скорасць байдаркі
ОПЫТ РАБОТЫ НАД УЧЕБНОЙ ЗАДАЧЕЙ ПУТЁМ ПОИСКА РЕШЕНИЯ С ПОСЛЕДУЮЩИМ ИЗМЕНЕНИЕМ ЕЁ ТЕКСТА, А ЗАТЕМ ИССЛЕДОВАНИИ РЕЗУЛЬТАТОВ УЧАЩИМИСЯ 3-4 КЛАССОВ
Качалко В.Б. (УО МГПУ И.П. Шамякина) Щур Л.М. (Мозырская гимназия имени Янки Купалы)
Внедрение поисково-исследовательской технологии начального обучения математике потребовало разработки способов преобразования текста задач как для поиска способов их решения, так и для исследования новых способов решения после преобразования задач. Покажем на примере задачи из учебника: У Миши, Алеся и Лени 27 тетрадей. У Миши на 3 тетради больше, чем у Алеся, и это на 3 тетради меньше, чем у Лени. Нельзя ли узнать, сколько тетрадей у каждого ученика? [1]. 1. Переформулировка задачи.
У Миши, Алеся и Лени 27 тетрадей. У Миши на 3 тетради больше, чем у Алеся. У Лёни на 3 тетради больше, чем у Миши. Сколько тетрадей у каждого ученика?
Переформулировка текста задачи из косвенной в прямую форму даёт возможность сделать задачу более понятной и доступной для решения.