
- •Ответы на электротехнику
- •1.Дать определения понятиям: электротехника, электрическая цепь, источник электрической энергии, приемник электрической энергии, передающий элемент.
- •2.Дать определения понятиям: постоянный и переменный электрический ток, эдс, напряжение.
- •3.Схема замещения, эквивалентная схема замещения.
- •4..Классификация электрических цепей. Активные и пассивные электрические цепи.
- •5.Резистивный элемент, индуктивность, емкость. Определение и обозначение на электрических схемах. Какая энергия образуется и как она находится.
- •6.Работа резистивного элемента в цепи постоянного тока. Привести схему и временные диаграммы.
- •7.Работа емкости в цепи постоянного тока. Привести схему и временные диаграммы.
- •8.Работа индуктивности в цепи постоянного тока. Привести схему и временные диаграммы.
- •9.Работа резистивного элемента в электрических цепях переменного тока. Какая мощность определяется и чему она равна за период. Привести схему и временные диаграммы.
- •10.Работа емкости в электрических цепях переменного тока. Какая мощность определяется и чему она равна за период. Привести схему и временные диаграммы.
- •11.Работа индуктивности в электрических цепях переменного тока. Какая мощность определяется и чему она равна за период. Привести схему и временные диаграммы.
- •12.Электрическая цепь переменного тока с последовательным соединением элементов r, l, c. Привести схему цепи и вывод закона Ома для нее.
- •13.Режимы работы цепи переменного тока с последовательным соединением элементов r, l, c. Какие свойства возникают в цепи при резонансе напряжений.
- •14.Какие мощности определяют при последовательном соединении элементов r, l, c? Что такое коэффициент мощности цепи и как его можно определить?
- •15.Электрическая цепь переменного тока с параллельным соединением элементов r, l, c. Привести схему цепи и вывод закона Ома для нее.
- •16.Режимы работы цепи переменного тока с параллельным соединением элементов r, l, c. Какие свойства возникают в цепи при резонансе тока?
- •17.Какие мощности определяют при параллельном соединении элементов r, l, c? Что такое коэффициент мощности цепи и как его можно определить?
- •18.Дать определения: трехфазная цепь, напряжение фазное и линейное, ток фазный и линейный. Какова роль нейтрального провода в четырехпроводной трехфазной цепи?
- •19.Свойства трехфазной цепи при соединении приемника «звездой». Привести схему.
- •20. Свойства трехфазной цепи при соединении приемников «треугольником». Привести схему.
- •21.Способы включения однофазных и трехфазных приемников в трехфазную четырехпроводную цепь. Привести схему.
- •22.Как определяется мощность трехфазной цепи при соединении приемников «звездой» и «треугольником». Заземление и зануление в трехфазных цепях.
- •23.Устройство и принцип действия двигателя постоянного тока.
- •24.Особенности и способы пуска двигателя постоянного тока.
- •25.Какими способами можно регулировать частоту вращения ротора двигателя постоянного тока?
- •26.Как осуществить реверсирование двигателя постоянного тока?
- •27.Что такое механическая и регулировочная характеристики двигателя постоянного тока?
- •28.Объясните устройство асинхронного двигателя и назначение основных узлов.
- •29.Объясните получение вращающегося мп.
- •30.Объясните принцип работы асинхронного двигателя.
- •31.Особенности и способы пуска асинхронного двигателя.
- •32.Какими способами можно регулировать частоту вращения асинхронного двигателя?
- •33.Что такое скольжение, как оно определяется и какова его роль в работе асинхронного двигателя?
- •34.Назначение и принцип действия трансформатора. Что такое коэффициент трансформации?
- •35.Какие потери мощности существуют в трансформаторе и как они определяются? Что такое внешняя характеристика трансформатора?
- •36.Электроника. Виды электроники. Устройства информационной электроники.
- •37.Основные виды преобразователей. Классификация элементов электроники.
- •38.Полупроводник. Электропроводимость полупроводников. Основные и не основные носители.
- •Механизм электрической проводимости
- •Носители заряда в полупроводниках
- •39.Донорные и акцепторные примеси. Их влияние на основные и не основные носители.
- •40.Полупроводниковые диоды. Принцип работы.
- •41.Выпрямители, их основные параметры. Однофазные однополупериодные выпрямители. Схема, принцип работы.
- •42.Однофазный двухполупериодный выпрямитель с выводом средней точки трансформатора. Схема, принцип работы.
- •43.Мостовой однофазный двухполупериодный выпрямитель. Схема, принцип работы.
- •44.Сглаживающие фильтры. Схемы и принцип работы.
- •Емкостной фильтр.
- •45.Транзистор. Назначение, схемы и принцип работы биполярных транзисторов.
38.Полупроводник. Электропроводимость полупроводников. Основные и не основные носители.
Полупроводни́к — материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектрикамии отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры. Наиболее часто используются кремний, арсенид галлия, селен, германий, теллур, разные оксиды, сульфиды, нитриды и карбиды.
Механизм электрической проводимости
Полупроводники характеризуются как свойствами проводников, так и диэлектриков. В полупроводниковых кристаллах атомы устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, как и алмаза, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома (1,76·10−19 Дж против 11,2·10−19 Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется 0,4·10−19 Дж), и отдельные атомы получают энергию для отрыва электрона от атома. С ростом температуры число свободных электронов и дырок увеличивается, поэтому в полупроводнике, не содержащем примесей, удельное сопротивление уменьшается. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1,5—2 эВ. Электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.
Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешёл электрон, входит другой электрон из другого атома и т. д. Это обуславливается ковалентными связями атомов. Таким образом, происходит перемещение положительного заряда без перемещения самого атома. Этот условный положительный заряд называют дыркой.
Носители заряда в полупроводниках
В полупроводниках носителями заряда являются электроны и дырки. Отношение их концентраций определяет тип проводимости полупроводника. Те носители, концентрация которых выше, называют основными носителями заряда, а носители другого типа — неосновными.
Если концентрация электронов значительно превосходит концентрацию дырок, то такой полупроводник называют полупроводником n-типа проводимости. В этом случае основными носителями заряда являются электроны, а неосновными носителями — дырки.
Соответственно, если концентрация дырок выше, чем электронов, то полупроводник называют полупроводником p-типа. В нем основными носителями являются дырки, а неосновными носителями — электроны.
Концентрация равновесных носителей заряда в полупроводнике определяется только температурой образца и концентрацией легирующих примесей. Под действием внешних воздействий (инжекция, облучение образца светом, ионизирующими частицами или ионизирующим излучением) в полупроводнике возникают неравновесные носители заряда, и полная концентрация носителей заряда увеличивается.