
- •1 Предмет термодинамики, ее методы, задачи место и роль в системе подготовки инженеров
- •2 Термодинамическая система
- •4 Параметры состояния. Уравнения состояния
- •6 Круговой процесс(цикл)
- •7 Газовые смеси, способы задания, вычисление параметров состояния, кажущейся молекулярной массы и газовой постоянной смеси, определение парц давл
- •9 Полная энергия тела(системы), внут энергия,энтальпия, энтропия, свойства
- •11 Второе нач термодинамики
- •13 Цикл Карно и его свойства
- •19 Назначение и конструкция подогревателей пвд и пнд
- •27 Pv диаг вод пара
- •30 Уравнение состояния реальных га-
- •32 Термодинамический анализ раобчих процессов преобразования энергии. Термодинамич кпд
- •34 Циклы паросиловых установок
- •37 Теплопроводность через цилиндрич стенки
- •38 Теплопередача через плоские и цилиндрич стенки коэф теплопередачи
- •39 Расчет тепловой изоляции трубопровода
- •48 Основы теории подобия
11 Второе нач термодинамики
Второе начало термодинамики является законом, в соответствии с которым макроскопические процессы, протекающие с конечной скоростью, необратимы. В отличие от идеальных (без потерь) механических или электродинамических обратимых процессов, реальные процессы, связанные с теплообменом при конечной разности температур (т. е. текущие с конечной скоростью), сопровождаются разнообразными потерями: на трение, диффузию газов, расширением газов в пустоту, выделением джоулевой теплоты и т.д. Поэтому эти процессы необратимы, то есть могут самопроизвольно протекать только в одном направлении. Само название «Второе начало термодинамики» и первая его формулировка (1850 г.) принадлежат Р. Клаузиусу: «…невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более нагретым». Причем такой процесс невозможен в принципе: ни путем прямого перехода теплоты от более холодных тел к более теплым, ни с помощью каких–либо устройств без использования каких-либо других процессов. В 1851 году английский физик У. Томсон дал другую формулировку второго начала термодинамики: «В природе невозможны процессы, единственным следствием которых был бы подъем груза, произведенный за счет охлаждения теплового резервуара». Как видно, обе приведённые формулировки второго начала термодинамики практически одинаковы. Отсюда следует невозможность реализации двигателя 2-го рода, т.е. двигателя без потерь энергии на трение и другие сопутствующие потери. Кроме того, отсюда также следует, что все реальные процессы, происходящие в материальном мире в открытых системах, необратимы.В современной термодинамике второе начало термодинамики изолированных систем формулируется единым и самым общим образом как закон возрастания особой функции состояния системы, которую Клаузиус назвал энтропией (S). Физический смысл энтропии состоит в том, что в случае, когда материальная система находится в полном термодинамическом равновесии, элементарные частицы, из которых состоит эта система, находятся в неуправляемом состоянии и совершают различные случайные хаотические движения. В принципе можно определить общее число этих всевозможных состояний. Параметр, который характеризует общее число этих состояний, и есть энтропия. dSнеобр = (δq + δqтр )/Т, где δq - уд. внешн. теплота
в процессе.
dSнеобр > δq / Т. – принцип возростания энтропии.
.Пусть изолированная система состоит из двух тел «1» и «2», обладающих неодинаковой температурой T1 > T2. Тело «1» отдает некоторое количество тепла Q , а тело «2» его получает. При этом идет тепловой поток от тела «1» к телу «2». По мере уравнивания температур увеличивается суммарное количество элементарных частиц тел «1» и «2», находящихся в тепловом равновесии.По мере увеличения этого количества частиц увеличивается и энтропия. И как только наступит полное тепловое равновесие тел «1» и «2», энтропия достигнет своего максимального значения. Таким образом, в замкнутой системе энтропия S при любом реальном процессе либо возрастает, либо остаётся неизменной, т. е. изменение энтропии S 0. Знак равенства в этой формуле имеет место только для обратимых процессов. В состоянии равновесия, когда энтропия замкнутой системы достигает максимума, никакие макроскопические процессы в такой системе, согласно второму началу термодинамики, невозможны. Отсюда следует, что энтропия - физическая величина, количественно характеризующая особенности молекулярного строения системы, от которых зависят энергетические преобразования в ней. Связь энтропии с молекулярным строением системы первым объяснил Л. Больцман в 1887 году. Он установил статистический смысл энтропии (формула 1.6). Согласно Больцману (высокая упорядоченность имеет относительно низкую вероятность) S = k lnP, где k — постоянная Больцмана, P – статистический вес. k = 1.37·10-23 Дж/К.
Для изолированной системы термодинамическая вероятность W данного макросостояния пропорциональна его статистическому весу и определяется энтропией системы: W exp (S/k).
Таким образом, закон возрастания энтропии имеет статистически-вероятностный характер и выражает постоянную тенденцию системы к переходу в более вероятное состояние. Отсюда следует, что наиболее вероятным состоянием, достижимым для системы, является такое, в котором события, происходящие в системе одновременно, статистически взаимно компенсируются. Максимально вероятным состоянием макросистемы является состояние равновесия, которого она может в принципе достичь за достаточно большой промежуток времени. Как было указано выше, энтропия является величиной аддитивной, то есть она пропорциональна числу частиц в системе.
12 условия работы тепловых машин. Прямые и обратные циклы. Термодинамич КПД и холодильный коэф
Машины, производящие механическую работу в результате обмена теплотой с окружающими телами, называются тепловыми двигателями. В большинстве таких машин нагревание получается при сгорании топлива, благодаря чему нагреватель получает достаточно высокую температуру. В этих случаях работа совершается за счет использования внутренней энергии смеси топлива с кислородом воздуха. Кроме того, существуют машины, в которых нагревание производится Солнцем, а также проекты машин, использующих разности температур морской воды. Однако пока ни те, ни другие не имеют заметного практического значения. В настоящее время эксплуатируются также тепловые машины, использующие теплоту, выделяющуюся в реакторе, где происходит расщепление и преобразование атомных ядер
Термодинамическим циклом (или круговым процессом) называют процесс, при котором термодинамическая система, выйдя из первоначального состояния по завершении цикла, вновь возвращается в это же состояние. Различают прямые и обратные циклы (рис. 1.1).
Рис. 1.1. Прямой (а) и обратный (б) термодинамические циклы T1, — тело с более высокой температурой; Т2 — тело с более низкой температурой;Q — теплота; L — работа
В прямом цикле теплота передается от тела с более высокого температурного уровня к телу с более низкой температурой, а термодинамическая система, выполняющая роль посредника, превращает часть передаваемой теплоты в работу. В обратном цикле теплота передается от тела с более низкой температурой к телу с более высокой температурой, но для осуществления этого процесса требуется затрата энергии. Любая холодильная машина реализует обратный термодинамический цикл и подобна насосу, «перекачивающему» теплоту Q2 с более низкого уровня Т2 на более высокий T1 но для этого процесса требуется совершить работу L. Причем на более высо¬кий температурный уровень будет передано количество теплоты Q1=Q2+L: Такие обратные термодинамические циклы получили название холодильных.
Для того, чтобы управлять состоянием рабочего тела, в тепловую машину входят нагреватель и холодильник. В каждом цикле рабочее тело забирает некоторое количество теплоты (Q1) у нагревателя и отдаёт количество теплоты Q2 холодильнику. Работа, совершённая тепловой машиной в цикле, равна, таким образом,
,
так как изменение внутренней энергии U в круговом процессе равно нулю (это функция состояния).
Напомним, что работа не является функцией состояния, иначе суммарная работа за цикл также была бы равна нулю.
При этом нагреватель потратил энергию Q1. Поэтому тепловой, или, как его ещё называют, термический или термодинамический коэффициент полезного действия тепловой машины (отношение полезной работы к затраченной тепловой энергии) равен
Холодильный коэффициент, безразмерная величина (обычно больше единицы), характеризующая энергетическую эффективность работы холодильной машины; равна отношению холодопроизводительности к количеству энергии (работе), затраченной в единицу времени на осуществление холодильного цикла. Определяется типом холодильного цикла, по котором у работает машина, совершенством ее основных элементов и для одной и той же машины зависит от температурных условий ее работы. Различают теоретический и реальный Холодильный коэффициент В частности, теоретический Холодильный коэффициент идеальной парокомпрессионной машины, работающей по обратному Карно циклу, не зависит от рода холодильного агента и определяется выражением eк = T0/(Т - Т0), где T0 и Т - абсолютные температуры охлаждаемого объекта и окружающей среды (кипения и конденсации хладагента)