Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Bilety_po_KSE_13-22_melky_variant.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
337.41 Кб
Скачать

19.Специальная теория относительности

Специальная теория относительности (СТО; также частная теория относительности) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей называется общей теорией относительности.

Описываемые специальной теорией относительности отклонения в протекании физических процессов от предсказаний классической механики называют релятивистскими эффектами, а скорости, при которых такие эффекты становятся существенными, - релятивистскими скоростями.

Основные понятия и постулаты СТО:

Основные понятия:

Система отсчёта представляет собой некоторое материальное тело, выбираемое в качестве начала этой системы, способ определения положения объектов относительно начала системы отсчёта и способ измерения времени. Обычно различают системы отсчёта и системы координат. Добавление процедуры измерения времени к системе координат «превращает» её в систему отсчёта.

Инерциальная система отсчёта (ИСО) - это такая система, относительно которой объект, не подверженный внешним воздействиям, движется равномерно и прямолинейно. Постулируется, что любая система отсчёта, движущаяся относительно данной инерциальной системы равномерно и прямолинейно, также является ИСО.

Событием называется любой физический процесс, который может быть локализован в пространстве, и имеющий при этом очень малую длительность. Другими словами, событие полностью характеризуется координатами (x, y, z) и моментом времени t. Примерами событий являются: вспышка света, положение материальной точки в данный момент времени и т.п.

Обычно рассматриваются две инерциальные системы S и S'. Время и координаты некоторого события, измеренные относительно системы S, обозначаются как (t, x, y, z), а координаты и время этого же события, измеренные относительно системы S', как (t', x', y', z'). Удобно считать, что координатные оси систем параллельны друг другу, и система S' движется вдоль оси x системы S со скоростью v. Одной из задач СТО является поиск соотношений, связывающих (t', x', y', z') и (t, x, y, z), которые называются преобразованиями Лоренца.

Принцип относительности

Ключевым для аксиоматики специальной теории относительности является принцип относительности, утверждающий равноправие инерциальных систем отсчёта. Это означает, что все физические процессы в инерциальных системах отсчёта описываются одинаковым образом. Совместно с остальными постулатами, перечисленными выше, принципа относительности достаточно, чтобы получить явный вид преобразований координат и времени между ИСО [10] [12] [13].

Для этого необходимо рассмотреть три инерциальные системы S1, S2 и S3. Пусть скорость системы S2 относительно системы S1 равна  , скорость системы S3 относительно S2 равна  , а относительно S1, соответственно,  . Записывая последовательность преобразований (S2, S1), (S3, S2) и (S3, S1), можно получить следующее равенство [10]:

Доказательство  

Так как относительные скорости систем отсчёта   и   произвольные и независимые величины, то это равенство будет выполняться только в случае, когда отношение   равно некоторой константе  , единой для всех инерциальных систем отсчёта, и, следовательно,  .

Существование обратного преобразования между ИСО, отличающегося от прямого только заменой знака относительной скорости, позволяет найти функцию  .

Доказательство  

Таким образом, с точностью до произвольной константы  , получается явный вид преобразований между двумя ИСО. О численном значении константы   и её знаке без обращения к эксперименту ничего сказать нельзя [14]. Если  , то удобно ввести обозначение  . Тогда преобразования принимают следующий вид:

и называются преобразованиями Лоренца. Из дальнейшего анализа станет ясно, что константа   имеет смысл максимальной скорости движения любого объекта. Подобный вывод преобразований Лоренца стал известен спустя 5 лет после известной статьи Эйнштейна 1905 года, благодаря работам Игнатовского, Франка и Роте .

Постулат постоянства скорости света

Исторически важную роль при построении СТО сыграл второй постулат Эйнштейна, утверждающий, что скорость света   не зависит от скорости движения источника и одинакова во всех инерциальных системах отсчёта. Именно при помощи этого постулата и принципа относительности Альберт Эйнштейн в 1905 г. получилпреобразования Лоренца с фундаментальной константой  , имеющей смысл скорости света. С точки зрения описанного выше аксиоматического построения СТО второй постулат Эйнштейна оказывается теоремой теории и непосредственно следует из преобразований Лоренца .

Непротиворечивость теории относительности

Теория относительности является логически непротиворечивой теорией. Это означает, что из её исходных положений нельзя логически вывести некоторое утверждение одновременно с его отрицанием. Поэтому множество так называемых парадоксов (подобных парадоксу близнецов) являются кажущимися. Они возникают в результате некорректного применения теории к тем или иным задачам, а не в силу логической противоречивости СТО.

Справедливость теории относительности, как и любой другой физической теории, в конечном счёте, проверяется эмпирически. Кроме этого, логическая непротиворечивость СТО может быть доказана аксиоматически. Например, в рамках группового подхода  показывается, что преобразования Лоренца могут быть получены на основе подмножества аксиом классической механики. Этот факт сводит доказательство непротиворечивости СТО к доказательству непротиворечивости классической механики. Действительно, если следствия из более широкой системы аксиом являются непротиворечивыми, то они тем более будут непротиворечивыми при использовании только части аксиом [23]. С точки зрения логики противоречия могут возникать, когда к уже существующим аксиомам добавляется новая аксиома, не согласующаяся с исходными. В аксиоматическом построении СТО, описанном выше, этого не происходит, поэтому СТО является непротиворечивой теорией

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]