
- •Числа и множества. Числа и цифры. Римская буквенная нумерация. Позиционная система счисления (двоичная, десятичная).
- •Натуральные, простые, отрицательные числа. Основные арифметические действия и законы. Законы ассоциативности (сочетательности), коммутативности и дистрибутивности (распределительности).
- •Наиболее употребительные числовые множества (отрезок, интервал, полуинтервал). Абсолютная величина числа.
- •Комплексные числа
- •Алгебраические свойства
- •Рациональные и иррациональные числа. Геометрическое представление одномерного пространства. Трансцендентные числа. Мнимая единица.
- •Свойства
- •Свойства
- •Степени мнимой единицы
- •Факториал
- •Корни из мнимой единицы
- •Комплексные числа. Комплексно сопряженные числа. Геометрическая, тригонометрическая и показательная форма комплексных чисел.
- •Представление комплексных чисел Алгебраическая форма
- •Тригонометрическая и показательная формы
- •Числовые множества n,z,q,r,c. Пустое множество. Понятие континуума (непрерывности)
- •Свойства пустого множества
- •Свойства
- •Примеры
- •Суть метода математической индукции. Понятие факториала.
- •Формулировка
- •Принцип полной математической индукции
- •Соединения и формула бинома Ньютона.
- •Прогрессии. Арифметическая и геометрическая прогрессии.
- •Примеры
- •Средние величины. Среднее арифметическое, квадратичное, геометрическое. Золотое сечение.
- •Примеры
- •Непрерывная случайная величина
- •Свойства
- •Свойства
- •Математические свойства
- •Понятие функции. Постоянная, возрастающая (убывающая). Четные и нечетные функции.
- •Возрастание и убывание
- •Чётность
- •Периодические функции. Определение периода функции.
- •Примеры
- •Простейшие элементарные функции и их графики (постоянная и степенная).
- •Показательная и логарифмическая функция.
- •Тригонометрические функции.
- •Обратные тригонометрические функции.
- •Функция arcsin
- •Свойства функции arcsin
- •Получение функции arcsin
- •Функция arccos
- •Свойства функции arccos
- •Получение функции arccos
- •Функция arctg
- •Свойства функции arctg
- •Получение функции arctg
- •Функция arcctg
- •Свойства функции arcctg
- •Получение функции arcctg
- •Функция arcsec
- •Функция arccosec
- •Методы построения графиков функций.
- •Аналитическая геометрия плоскости, как двухмерное алгебраическое пространство. Уравнение прямой и окружности.
- •Линии второго порядка (конические сечения).
- •Свойства
- •Группы преобразований
- •Трехмерное евклидово пространство. Поверхности второго порядка.
- •Цилиндрические поверхности
- •Конические поверхности
- •Поверхности вращения
- •Эллиптический параболоид
- •Гиперболический параболоид
- •Центральные поверхности
- •Наиболее употребляемые системы координат.
- •Прямоугольная система координат на плоскости
- •Прямоугольная система координат в пространстве
- •Прямоугольная система координат в многомерном пространстве
- •Прямоугольные координаты вектора
- •Элементы векторной алгебры. Векторы. Сложение векторов. Понятие главного вектора. Координаты вектора.
- •Понятие вектора в абстрактной алгебре
- •Понятие вектора в стандартном евклидовом n-мерном пространстве
- •Вектор в линейном пространстве
- •Сложение
- •Умножение (произведение) векторов. Скалярное, векторное, смешанное и двойное векторное произведение. Скалярное произведение
- •Векторное произведение
- •Смешанное произведение
- •Условие параллельности и перпендикулярности векторов.
- •Неевклидовы геометрии и физическое пространство.
- •Метрика для плоскости
- •Описание метода
- •Вычислительная сложность
- •Предел функции. Теоремы о пределах (предел суммы и разности, произведения частного функций). Приделы некоторых функций ( , , …). Первый и второй замечательные пределы.
- •Первый замечательный предел
- •Второй замечательный предел
- •Бесконечно малые величины. Связь предела функции с бесконечно малыми величинами. Непрерывность функции.
- •Теоремы Больцано и Вейерштрасса с непрерывных функциях на отрезке [a,b].
- •Первая формулировка
- •Расширенный вариант первой формулировки
- •Вторая формулировка
- •Скорость изменения функции
- •Правила дифференцирования общих функций
- •Исследование поведения функций. Возрастаний и убывание функций. Примеры.
- •Исследование поведения функций. Точки локального экстремума функции. Необходимое и достаточное условие локального экстремума.
- •Направление выпуклости и точки перегиба графика функции.
- •Определения и понятия.
- •Интегрирование. Первообразная и неопределенный интеграл.
- •Определенный интеграл. Формула Ньютона – Лейбница.
- •Определение
- •Свойства
Элементы векторной алгебры. Векторы. Сложение векторов. Понятие главного вектора. Координаты вектора.
Вектор — понятие, определяемое в разных разделах математики различно.
Понятие вектора в абстрактной алгебре
Пусть
—
некоторое поле с
аддитивной операцией +, мультипликативной
операцией *, аддитивной
единицей 0
и мультипликативной
единицей 1.
Пусть
—
некоторая абелева
группа с единицей
.
Если существует операция
,
такая что для любых
и
для любых
выполняются
соотношения:
1.
,
2.
,
3.
,
4.
,
тогда
называется векторным
пространством над
полем
,
элементы V называются векторами,
элементы F —скалярами,
а указанная операция
— умножением
вектора на скаляр.
Понятие вектора в стандартном евклидовом n-мерном пространстве
Вектор
в арифметическом n-мерном пространстве
Является
частным случаем определения вектора в
абстрактной алгебре. Если в качестве
взять
поледействительных
чисел с
операциями сложения и умножения.
,
где
— декартова
степеньмножества
R; для
операцию
«+» зададим следующим образом:
,
нейтральный элемент:
=(0,…,0),
обратный элемент:
;
операцию умножения на скаляр:
.
Тогда вектор, задаваемый кортежем длиной
n, состоящим из действительных чисел
является арифметическим вектором
векторного пространства
над
полем действительных чисел
.
n-мерное
пространство задается как
— декартова
степень множества
действительных чисел, точка — как
кортеж
длины
n из действительных чисел, что соответствует
определению пространства как множества
точек.
Вектор в планарной евклидовой геометрии (связанный вектор) — упорядоченная пара точек, одна из которых называется началом, вторая — концом вектора.
Два вектора равны, если разности по каждой из координат с одинаковыми номерами конечной и начальной точки для этих векторов равны. Эти разности называются пространственными координатами вектора.
Свободный вектор задается классом всех равных связанных векторов и полагается равным каждому из этих связанных векторов и таким образом может быть определен как вектор в арифметическом пространстве (кортеж чисел длины n (пространственных координат равных ему связанных векторов) с операциями сложения и умножения на скаляр).
Результатом операций со связанными векторами принимается вектор, начальная точка которого совпадает с начальной точкой первого слагаемого при сложении векторов и начальной точке исходного вектора при умножении вектора на скаляр.
Нуль-вектор — вектор, начало и конец которого совпадают.
Также существует более распространенное определение вектора как направленного отрезка, но оно требует определения прямой и отрезка в n-мерном пространстве.
Прямая,
на которой лежит ненулевой вектор
с
началом в точке
,
заданный свободным вектором с
пространственными координатами
—
множество точек
,
удовлетворяющее условию:
Отрезок MN —
множество всех точек O(удовлетворяющих
условию
),
все различные точки которого принадлежат
одной прямой, точки M и N называются
концевыми точками отрезка. Отрезок
называется направленным, если его
концевые точки упорядочены. Если концы
отрезка совпадают, он состоит из 1 точки.
При введение скалярного произведения, угла и длины вектора, задающей расстояние между двумя точками как расстояние между начальной и конечной точками вектора(как показано ниже([1], [2], [3])) векторное пространство становится евклидовым нормированным пространством и при n=3 соответствует модели физического трехмерного пространства; при n=2 — плоскости этого пространства; при n=1 точка соответствует числу на числовой прямой, свободный вектор — разности двух чисел, а длина вектора соответствует модулю; при n=0 существует только одна точка(задается пустым кортежем), декартово произведение содержит только пустой кортеж, соответственно пространство представляет собой точку, есть только нулевой вектор; пространство при n>3 не имеет наглядной геометрической интерпретации, так как физическое пространство трёхмерно.
Скалярное
произведение определяется
по формуле:
,
[1]
(где
—
пространственные координаты векторов
)
Длина
вектора:
,
[2]
(где
—
пространственные координаты вектора.)
Угол
между двумя векторами
(где
—
пространственные координаты векторов
)
определяется через скалярное
произведение:
,
[3]