
- •Числа и множества. Числа и цифры. Римская буквенная нумерация. Позиционная система счисления (двоичная, десятичная).
- •Натуральные, простые, отрицательные числа. Основные арифметические действия и законы. Законы ассоциативности (сочетательности), коммутативности и дистрибутивности (распределительности).
- •Наиболее употребительные числовые множества (отрезок, интервал, полуинтервал). Абсолютная величина числа.
- •Комплексные числа
- •Алгебраические свойства
- •Рациональные и иррациональные числа. Геометрическое представление одномерного пространства. Трансцендентные числа. Мнимая единица.
- •Свойства
- •Свойства
- •Степени мнимой единицы
- •Факториал
- •Корни из мнимой единицы
- •Комплексные числа. Комплексно сопряженные числа. Геометрическая, тригонометрическая и показательная форма комплексных чисел.
- •Представление комплексных чисел Алгебраическая форма
- •Тригонометрическая и показательная формы
- •Числовые множества n,z,q,r,c. Пустое множество. Понятие континуума (непрерывности)
- •Свойства пустого множества
- •Свойства
- •Примеры
- •Суть метода математической индукции. Понятие факториала.
- •Формулировка
- •Принцип полной математической индукции
- •Соединения и формула бинома Ньютона.
- •Прогрессии. Арифметическая и геометрическая прогрессии.
- •Примеры
- •Средние величины. Среднее арифметическое, квадратичное, геометрическое. Золотое сечение.
- •Примеры
- •Непрерывная случайная величина
- •Свойства
- •Свойства
- •Математические свойства
- •Понятие функции. Постоянная, возрастающая (убывающая). Четные и нечетные функции.
- •Возрастание и убывание
- •Чётность
- •Периодические функции. Определение периода функции.
- •Примеры
- •Простейшие элементарные функции и их графики (постоянная и степенная).
- •Показательная и логарифмическая функция.
- •Тригонометрические функции.
- •Обратные тригонометрические функции.
- •Функция arcsin
- •Свойства функции arcsin
- •Получение функции arcsin
- •Функция arccos
- •Свойства функции arccos
- •Получение функции arccos
- •Функция arctg
- •Свойства функции arctg
- •Получение функции arctg
- •Функция arcctg
- •Свойства функции arcctg
- •Получение функции arcctg
- •Функция arcsec
- •Функция arccosec
- •Методы построения графиков функций.
- •Аналитическая геометрия плоскости, как двухмерное алгебраическое пространство. Уравнение прямой и окружности.
- •Линии второго порядка (конические сечения).
- •Свойства
- •Группы преобразований
- •Трехмерное евклидово пространство. Поверхности второго порядка.
- •Цилиндрические поверхности
- •Конические поверхности
- •Поверхности вращения
- •Эллиптический параболоид
- •Гиперболический параболоид
- •Центральные поверхности
- •Наиболее употребляемые системы координат.
- •Прямоугольная система координат на плоскости
- •Прямоугольная система координат в пространстве
- •Прямоугольная система координат в многомерном пространстве
- •Прямоугольные координаты вектора
- •Элементы векторной алгебры. Векторы. Сложение векторов. Понятие главного вектора. Координаты вектора.
- •Понятие вектора в абстрактной алгебре
- •Понятие вектора в стандартном евклидовом n-мерном пространстве
- •Вектор в линейном пространстве
- •Сложение
- •Умножение (произведение) векторов. Скалярное, векторное, смешанное и двойное векторное произведение. Скалярное произведение
- •Векторное произведение
- •Смешанное произведение
- •Условие параллельности и перпендикулярности векторов.
- •Неевклидовы геометрии и физическое пространство.
- •Метрика для плоскости
- •Описание метода
- •Вычислительная сложность
- •Предел функции. Теоремы о пределах (предел суммы и разности, произведения частного функций). Приделы некоторых функций ( , , …). Первый и второй замечательные пределы.
- •Первый замечательный предел
- •Второй замечательный предел
- •Бесконечно малые величины. Связь предела функции с бесконечно малыми величинами. Непрерывность функции.
- •Теоремы Больцано и Вейерштрасса с непрерывных функциях на отрезке [a,b].
- •Первая формулировка
- •Расширенный вариант первой формулировки
- •Вторая формулировка
- •Скорость изменения функции
- •Правила дифференцирования общих функций
- •Исследование поведения функций. Возрастаний и убывание функций. Примеры.
- •Исследование поведения функций. Точки локального экстремума функции. Необходимое и достаточное условие локального экстремума.
- •Направление выпуклости и точки перегиба графика функции.
- •Определения и понятия.
- •Интегрирование. Первообразная и неопределенный интеграл.
- •Определенный интеграл. Формула Ньютона – Лейбница.
- •Определение
- •Свойства
Свойства функции arctg
, при x > 0.
Получение функции arctg
Дана
функция
На
всей своей области определения она
является кусочно-монотонной, и, значит,
обратное соответствие
функцией
не является. Поэтому рассмотрим отрезок,
на котором она строго возрастает и
принимает все свои значения только один
раз —
На
этом отрезке
строго
монотонно возрастает и принимает все
свои значения только один раз,
следовательно, на интервале
существует
обратная
,
график которой симметричен графику
на
отрезке
относительно
прямой
Функция arcctg
График
функции y=arcctg x
Арккотангенсом числа m называется
такое значение угла x,
для которого
Функция
непрерывна
и ограничена на всей своей числовой
прямой. Функция
является
строго убывающей.
при
при
Свойства функции arcctg
(график функции центрально-симметричен относительно точки
при любых
Получение функции arcctg
Дана
функция
.
На всей своей области определения она
является кусочно-монотонной, и, значит,
обратное соответствие
функцией
не является. Поэтому рассмотрим отрезок,
на котором она строго убывает и принимает
все свои значения только один раз —
.
На этом отрезке
строго
убывает и принимает все свои значения
только один раз, следовательно, на
интервале
существует
обратная функция
,
график которой симметричен графику
на
отрезке
относительно
прямой
График
симметричен к арктангенсу
Функция arcsec
Функция arccosec
Методы построения графиков функций.
Аналитическая геометрия плоскости, как двухмерное алгебраическое пространство. Уравнение прямой и окружности.
Линии второго порядка (конические сечения).
Конические сечения: окружность,эллипс, парабола (плоскость сечения параллельна образующей конуса),гипербола.
Три
основных конических сечения
Коническое сечение или коника есть пересечение плоскости с круговым конусом. Существует три главных типа конических сечений: эллипс, парабола и гипербола, кроме того существуют вырожденные сечения: точка, прямая и пара прямых.Окружность можно рассматривать как частный случай эллипса.
Конические сечения могут быть получены как пересечение плоскости с двусторонним конусом
(в Декартовой
системе координат)
Здесь
—
угол
между образующей конуса и его осью.
Если плоскость проходит через начало координат, то получается вырожденное сечение. В невырожденном случае,
если секущая плоскость пересекает все образующие конуса в точках одной его полости, получаем эллипс,
если секущая плоскость параллельна одной из касательных плоскостей конуса, получаем параболу,
если секущая плоскость пересекает обе полости конуса, получаем гиперболу.
Уравнение кругового конуса квадратично, стало быть все конические сечения являютсяквадриками, также все квадрики плоскости являются коническими сечениями (хотя две параллельные прямые образуют вырожденную квадрику которая не может быть получена как сечение конуса, но всё же обычно считается «вырожденным коническим сечением»).
Свойства
Через любые пять точек на плоскости, никакие три из которых не лежат на одной прямой, можно провести единственное коническое сечение.