
- •Числа и множества. Числа и цифры. Римская буквенная нумерация. Позиционная система счисления (двоичная, десятичная).
- •Натуральные, простые, отрицательные числа. Основные арифметические действия и законы. Законы ассоциативности (сочетательности), коммутативности и дистрибутивности (распределительности).
- •Наиболее употребительные числовые множества (отрезок, интервал, полуинтервал). Абсолютная величина числа.
- •Комплексные числа
- •Алгебраические свойства
- •Рациональные и иррациональные числа. Геометрическое представление одномерного пространства. Трансцендентные числа. Мнимая единица.
- •Свойства
- •Свойства
- •Степени мнимой единицы
- •Факториал
- •Корни из мнимой единицы
- •Комплексные числа. Комплексно сопряженные числа. Геометрическая, тригонометрическая и показательная форма комплексных чисел.
- •Представление комплексных чисел Алгебраическая форма
- •Тригонометрическая и показательная формы
- •Числовые множества n,z,q,r,c. Пустое множество. Понятие континуума (непрерывности)
- •Свойства пустого множества
- •Свойства
- •Примеры
- •Суть метода математической индукции. Понятие факториала.
- •Формулировка
- •Принцип полной математической индукции
- •Соединения и формула бинома Ньютона.
- •Прогрессии. Арифметическая и геометрическая прогрессии.
- •Примеры
- •Средние величины. Среднее арифметическое, квадратичное, геометрическое. Золотое сечение.
- •Примеры
- •Непрерывная случайная величина
- •Свойства
- •Свойства
- •Математические свойства
- •Понятие функции. Постоянная, возрастающая (убывающая). Четные и нечетные функции.
- •Возрастание и убывание
- •Чётность
- •Периодические функции. Определение периода функции.
- •Примеры
- •Простейшие элементарные функции и их графики (постоянная и степенная).
- •Показательная и логарифмическая функция.
- •Тригонометрические функции.
- •Обратные тригонометрические функции.
- •Функция arcsin
- •Свойства функции arcsin
- •Получение функции arcsin
- •Функция arccos
- •Свойства функции arccos
- •Получение функции arccos
- •Функция arctg
- •Свойства функции arctg
- •Получение функции arctg
- •Функция arcctg
- •Свойства функции arcctg
- •Получение функции arcctg
- •Функция arcsec
- •Функция arccosec
- •Методы построения графиков функций.
- •Аналитическая геометрия плоскости, как двухмерное алгебраическое пространство. Уравнение прямой и окружности.
- •Линии второго порядка (конические сечения).
- •Свойства
- •Группы преобразований
- •Трехмерное евклидово пространство. Поверхности второго порядка.
- •Цилиндрические поверхности
- •Конические поверхности
- •Поверхности вращения
- •Эллиптический параболоид
- •Гиперболический параболоид
- •Центральные поверхности
- •Наиболее употребляемые системы координат.
- •Прямоугольная система координат на плоскости
- •Прямоугольная система координат в пространстве
- •Прямоугольная система координат в многомерном пространстве
- •Прямоугольные координаты вектора
- •Элементы векторной алгебры. Векторы. Сложение векторов. Понятие главного вектора. Координаты вектора.
- •Понятие вектора в абстрактной алгебре
- •Понятие вектора в стандартном евклидовом n-мерном пространстве
- •Вектор в линейном пространстве
- •Сложение
- •Умножение (произведение) векторов. Скалярное, векторное, смешанное и двойное векторное произведение. Скалярное произведение
- •Векторное произведение
- •Смешанное произведение
- •Условие параллельности и перпендикулярности векторов.
- •Неевклидовы геометрии и физическое пространство.
- •Метрика для плоскости
- •Описание метода
- •Вычислительная сложность
- •Предел функции. Теоремы о пределах (предел суммы и разности, произведения частного функций). Приделы некоторых функций ( , , …). Первый и второй замечательные пределы.
- •Первый замечательный предел
- •Второй замечательный предел
- •Бесконечно малые величины. Связь предела функции с бесконечно малыми величинами. Непрерывность функции.
- •Теоремы Больцано и Вейерштрасса с непрерывных функциях на отрезке [a,b].
- •Первая формулировка
- •Расширенный вариант первой формулировки
- •Вторая формулировка
- •Скорость изменения функции
- •Правила дифференцирования общих функций
- •Исследование поведения функций. Возрастаний и убывание функций. Примеры.
- •Исследование поведения функций. Точки локального экстремума функции. Необходимое и достаточное условие локального экстремума.
- •Направление выпуклости и точки перегиба графика функции.
- •Определения и понятия.
- •Интегрирование. Первообразная и неопределенный интеграл.
- •Определенный интеграл. Формула Ньютона – Лейбница.
- •Определение
- •Свойства
Числа и множества. Числа и цифры. Римская буквенная нумерация. Позиционная система счисления (двоичная, десятичная).
Число— основное понятие математики, используемое для количественной характеристики, сравнения и нумерации объектов. Цифры — система знаков («буквы») для записи чисел («слов») (числовые знаки). Слово «цифра» без уточнения обычно означает один из следующих десяти («алфавит») знаков: 0 1 2 3 4 5 6 7 8 9 (т. н. «арабские цифры»). Сочетания этих цифр порождают дву-(и более)значные коды и числа. Существуют также много других вариантов («алфавитов»):
римские цифры (I V X L C D M)
шестнадцатеричные цифры (0 1 2 3 4 5 6 7 8 9 A B C D E F)
цифры майя (от 0 до 19)
в некоторых языках, например, в древнегреческом, в иврите, в церковнославянском, существует система записи чисел буквами и др.
Позиционная система счисления (позиционная нумерация) — система счисления, в которой значение каждого числового знака (цифры) в записи числа зависит от его позиции (разряда).
Двоичная система счисления — позиционная система счисления с основанием 2.
Двоичная система счисления является комбинацией двоичной системы кодирования и показательной весовой функции с основанием равным 2. Положительные целые числа (без знака) записываются в виде:
где:
— представляемое число, первый индекс — основание системы кодирования (размерность множества цифр a={0,1}), второй индекс — основание весовой показательной функции b (в двоично-десятичном кодировании b=10),
— запись числа, строка цифровых знаков,
— обозначение основания системы кодирования и основания системы счисления,
— количество цифр (знаков) в числе x2,2,
— порядковый номер цифры,
— цифры числа x2,2 из множества a={0,1}, в двоичной системе счисления основание системы кодирования равно 2,
— основание показательной весовой функции, основание системы счисления,
— весовая показательная функция, создающая весовые коэффициенты.
Десятичная система счисления — позиционная система счисления по целочисленному основанию 10. Одна из наиболее распространённых систем. В ней используются цифры 1, 2, 3,4, 5, 6, 7, 8, 9, 0, называемые арабскими цифрами. Предполагается, что основание 10 связано с количеством пальцев рук у человека.
Целое число x в десятичной системе счисления представляется в виде конечной линейной комбинации степеней числа 10:
,
где
—
это целые числа, называемые цифрами,
удовлетворяющие неравенству
Обычно
для ненулевого числа x требуют,
чтобы старшая цифра
в
десятичном представлении x была
также ненулевой.
Например, число сто три представляется в десятичной системе счисления в виде:
С
помощью n позиций
в десятичной системе счисления можно
записать целые числа от 0 до
,
то есть, всего
различных
чисел.
Дробные числа записываются в виде строки цифр с разделителем десятичная запятая, называемой десятичной дробью:
где n — число разрядов целой части числа, m — число разрядов дробной части числа.