- •Г л а в а 1. Основные характеристики биосферы
- •1.1.Иерархическая структура биосферы
- •1.3. Вещественный состав среды обитания
- •1.4. Химические элементы в организмах
- •Общие закономерности химической дифференциации живого вещества в биосфере
- •1.5. Биосфера как сложная адаптивная система
- •1.5.1 Особенности термодинамической системы биосфера
- •1.5.2. Принцип Ле-Шателье - Брауна
- •Г л а в а 2. Организация живой материи
- •2.1. Упрощенная схема организации живой материи
- •2.2. Основные типы организмов
- •Автотрофы
- •Гетеротрофы
- •Анаэробы
- •Фенотип вида
- •2.3. Популяция
- •2.4. Экосистема
- •2.4.1. Экосистемная организация жизни
- •2.4.2. Размеры и биоразнообразие экосистем
- •2.4.3. Поведение экосистем
- •2.4.4. Важнейшие принципы строения биосферы
- •2.5. Факторы, определяющие состав и структуру экосистем
- •2.5.1. Энергетические факторы
- •Правило одного процента
- •Правило десяти процентов или закон пирамиды энергий р.Линдемана
- •Доля энергии, поступающей из биосферы в литосферу
- •2.5.2. Абиотические факторы
- •2.5.3. Биотические факторы
- •2.6. Действие экологических факторов на экосистемы
- •2.6.1. Показатели состояния экосистемы
- •2.6.2. Экологические риски
- •Вероятность неблагоприятного воздействия
- •Вероятность поражения объектов
- •Оценка экологического риска
- •2.6.3. Балльные оценки
- •Примерная шкала оценки состояния экосистемы
- •Г л а в а 3. Биогеохимические циклы
- •3.1. Общая характеристика циклов экосистем
- •Сопряжение биогеохимического цикла углерода с циклами других биогенов
- •3.2. Цикл углерода
- •Геологический кругооборот углерода
- •Накопление углерода в осадочных породах и процессы рифтогенеза
- •Биогеохимический цикл углерода
- •Антропогенное воздействие на круговорот углерода и его последствия
- •3.3. Биогеохимический цикл кислорода
- •Его расхода на окислительные процессы за неогей (1,6 млрд лет)
- •3.4. Биогеохимический цикл азота
- •3.5. Биогеохимический цикл фосфора
- •3.6. Биогеохимический цикл серы
- •3.7. Биогеохимический цикл железа
- •Г л а в а 4. Возникновение и эволюция жизни на Земле
- •4.1. Химическая эволюция
- •4.2. Сценарий образования и эволюции жизни на Земле
- •4.3. Закономерности эволюции биоты
- •Примеры наиболее ярких кризисов.
- •5.4. Эволюция человека
- •Г л а в а 5. Коэволюция биосферы и геосферных оболочек
- •Планета Земля
- •5.1. Начальный этап развития Земли (4,6‑4,0 млрд лет назад)
- •5.2. Особенности геологической истории
- •5.2.1. Докембрийский период
- •Ранний архей. Возникновение протоконтинентальной коры (4,0‑3,15 млрд лет)
- •Поздний архей. Формирование континентальной коры (3,15 – 2,50 млрд лет)
- •Ранний протерозой. Распад Пангеи (2,5‑1,7 млрд лет)
- •Нижний и средний рифей. Восстановление единства Пангеи (1,7—1,0 млрд лет)
- •Поздний протерозой. Раскол суперматерика Пангея (1,00 – 0,57 млрд лет)
- •Связь массовых вымираний с процессами рифтогенеза
- •Древнейшие экосистемы
- •5.2.2. Фанерозой
- •Палеозойская эра
- •Мезозойская эра
- •Кайнозойская эра
- •Г л а в а 6. Последствия антропогенного влияния на геосферы
- •6.1. Глобальные последствия загрязнения атмосферы
- •6.1.1 Санитарно-гигиеническая оценка качества атмосферного воздуха
- •Характеристики уровня загрязнения атмосферы
- •Критерии суммарного загрязнения атмосферы
- •6.1.2. Кислотные дожди
- •Источники поступления оксидов серы
- •Источники поступления оксидов азота
- •Механизм образования кислотных осадков
- •Воздействие кислотных дождей на экосистемы и людей
- •Меры по защите окружающей среды от кислотных дождей
- •Кислотообразующие выбросы мегаполисов
- •6.1.3. Озоновые дыры
- •Механизмы разрушения озонового слоя
- •Особенности формирования озоновых дыр в полярных областях
- •6.1.4. Изменение климата
- •Факторы, определяющие климат Земли
- •Особенности орбитального движения Земли
- •Солнечная энергия
- •Вулканы
- •Природные факторы, влияющие на климат Земли
- •Система ветров
- •Морские течения
- •Тектоника плит
- •Парниковый эффект и аэрозоли
- •Основные тенденции изменения климата в истории Земли
- •Общая характеристика последствий изменений климата
- •Факторы изменения климата, не связанные с антропогенным влиянием
- •Международная политика и глобальное потепление
- •6.2. Загрязнение гидросферы
- •6.2.1. Санитарно-гигиенические критерии оценки качества вод
- •6.2.2. Загрязнение морей нефтью и нефтепродуктами
- •Состав нефтепродуктов и их поведение в водоемах
- •Индексы чувствительности побережья к нефтяному загрязнению
- •Охрана морей и океанов
- •6.2.3.Загрязнение внутренних водоемов при добыче нефти
- •Характеристика источников воздействия на окружающую среду
- •Анализ состояния водотоков бассейна реки Ватинский Ёган
- •Динамика загрязнения нефтепродуктами и хлоридами
- •Р ис. 35. Результаты мониторинга р. Ватинский Ёган
- •6.2.3 Загрязнение внутренних водоемов
- •Эвтрофикация и механизм ее воздействия на экосистемы водоемов
- •Оценка степени эвтрофикации
- •Предупреждение эвтрофикации
- •Примеры решения проблем реабилитации внутренних водоемов
- •Великие озёра Северной Америки
- •Экологические проблемы Ладожского озера
- •6.3. Антропогенное влияние на литосферу
- •6.3.1. Химическое и биологическое загрязнение почв и грунтов
- •Санитарно-гигиеническая оценка опасности химического загрязнения почв
- •Общая характеристика опасности химического загрязнения
- •Тяжелые металлы
- •Пестициды.
- •Природный геохимический фон – биогеохимические провинции
- •6.3.2. Экологические проблемы городов
- •Поступление веществ в город
- •Состояние воздушного бассейна
- •Загрязнение водного бассейна
- •Твердые и концентрированные отходы
- •Биогеохимические процессы на полигонах тбо и их использование
- •Полигон тбо, как источник метана
- •6.3.3. Техногенное изменение литосферы в городах (на примере Москвы)
- •Геологическая среда территории Москвы
- •На территории Москвы Влияние хозяйственной деятельности на гидрогеологические условия
- •6.3.4. Воздействие на окружающую среду разработки месторождений полезных ископаемых
- •Эколого-геологические условия и ресурсы района оз. Баскунчак
- •Экологические неблагоприятные процессы, обусловленные добычей солей и гипса
- •И уровень соляного пласта (левая шкала, м абс. Отм.).
- •Рекомендации по рациональному освоению ресурсов
- •6.3.6. Радиационная безопасность
- •Характеристики величин и единиц в области ионизирующих излучений
- •Воздействие излучения на человека
- •Основные принципы нормирования дозовых нагрузок
- •Радиоактивность окружающей среды. Источники радиоактивного облучения
- •Месторождения полезных ископаемых, как источник радиоактивного загрязнения
- •Атомная энергетика и радиационная безопасность
- •Радиационная обстановка в районах ядерных взрывов и аварий
- •Облучение от источников, применяемых в медицине
- •Последствия ядерных аварий
- •Южно-Уральский след
- •Авария на Чернобыльской атомной электростанции
- •Результаты радиационно-гигиенической паспортизации опасных объектов
1.5. Биосфера как сложная адаптивная система
За рубежом распространена гипотеза Геи, согласно которой Земля представляет огромный организм, регулирующий обстановку, необходимую для своего существования. Эта идея обычно приписывается Лавелоку (Lovelock, 1995). Однако задолго до Ловелока ее сформулировал автор открытия хемосинтеза С. Н. Виноградский [4]. В лекции, прочитанной перед императорской фамилией (1896 г), Сергей Николаевич Виноградский отмечал:
«…вся живая материя восстает перед нами как одно целое, как один огромный организм, заимствующий свои элементы из резервуара неорганической природы, целесообразно управляющий всеми процессами своего прогрессивного и регрессивного метаморфоза и, наконец, отдающий снова всё заимствованное назад мертвой природе».
Образное определение используется довольно широко, благодаря своей наглядности, но при анализе процессов, происходящих в биосфере, целесообразно исходить из законов термодинамики и рассматривать биосферу, как сложную термодинамическую систему.
1.5.1 Особенности термодинамической системы биосфера
Биосфера относится к термодинамическим системам, особенности которых можно определить так:
сложная;
адаптивная;
неравновесная;
открытая.
Сложная система это система, состоящая из относительно независимых элементов, каждый из которых взаимодействует с остальными. В результате система приобретает новые свойства, которых нет у ее отдельных элементов.
Примером сложной системы является автомобиль. Его агрегаты (двигатель, шасси, подвеска, рулевое управление) не могут двигаться самостоятельно по дороге. Только объединив их, мы получаем автомобиль, которые обладает свойством, которое не присуще его составляющим. Он способен двигаться по дороге.
Биологические системы любого уровня относят к особому классу сложных систем, который называют адаптивными или самоорганизующимися.
Адаптивная система – это система, которая самостоятельно устанавливает и поддерживает на определенном уровне те или иные показатели. Реакция системы возникает в ответ на изменение каких-либо факторов.
Адаптация характерна для биологических систем любого уровня. Одноклеточные способны поддерживать постоянство цитоплазмы. Многие организмы могут сохранять температуру тела. Примером самоорганизации экосистем являются сезонные циклы – в летний период растения переживают период активного развития, а зимой находятся в состоянии покоя.
Все биологические системы относят к особому классу адаптивных систем – это неравновесные и открытые системы.
Неравновесным системам требуется внешний источник энергии. Организмы (растения, водоросли) в ходе фотосинтеза преобразуют энергию солнечного излучения в химическую энергию. В конечном счете, энергия рассеивается в процессе деятельности организмов (дыхание, движение, нагрев тела и т.п.), либо «консервируется» в биогенных осадочных породах. Необходимость во внешнем источнике энергии следует из двух главных законов термодинамики:
сохранения энергии – энергия может превращаться из одной формы в другую, но не может быть создана или уничтожена;
потери энергии – при совершении работы энергия не может быть использована на 100%, т. к. часть ее неизбежно превращается в тепло, представляющее собой результат случайного движения молекул, тогда как работа всегда определяет неслучайное (упорядоченное) использование энергии.
Открытая система характеризуется постоянным обменом веществом с окружающей средой. Организм получает необходимые для существования вещества из окружающей среды, а после использования возвращает их обратно в среду обитания. Этот круговорот действует и на уровне крупных структур – экосистем и биосферы.
В настоящее время основным источником энергии для биосферы является излучение Солнца, а литосфера, гидросфера и атмосфера служат источником веществ, необходимых биоте, и резервуарами, в которые возвращаются продукты жизнедеятельности и остатки организмов.
