
- •Кинематика материальной точки. Тело отсчета. Прямолинейное движение. Движение тела в пространстве. Декартова система координат. Система отсчета.
- •Радиус-вектор, скорость и ускорение материальной точки, их связь с дек. Координатами.
- •Движение по криволинейной траектории. Танг. И нормальное ускорения.
- •Кинематика твердого тела. Поступательное движение твердого тела...
- •Первый закон Ньютона – закон инерции. Инерциальная система отсчета.
- •Масса. Импульс. Второй закон Ньютона. Сила.
- •Третий закон Ньютона. Формулирование задачи движения n материальных точек. Начальные условия.
- •Силы в механике. Гравитационные силы. Закон всемирного тяготения. Принцип суперпозиции. Сила упругости. Закон Гука.
- •Сила трения. Сухое трение. Трение покоя. Трение скольжения.
- •Вопрос 10. Неинерциальные системы отсчета. Силы инерции.
- •Вопрос 11. Замкнутые системы. Законы сохранения.
- •12. Закон сохранения импульса
- •Вопрос 18. Механика абсолютно твердого тела. Вращение вокруг неподвижной оси. Момент инерции.
- •Вопрос 19. Теорема Штейнера. Вычисление моментов инерции. Примеры.
- •Вопрос 22. Пружинный маятник. Энергия маятника.
- •Вопрос 23. Физический маятник
- •Вопрос 24. Затухающие колебания. Дифференциальное уравнение, вид решения.
- •Вопрос 25. Вынужденные колебания. Резонанс
- •Вопрос 26: Волновые процессы. Уравнение плоской волны.
- •Вопрос 27: Макроскопическая система большого количества молекул
- •28. Массы и размеры молекул. Атомная масса. Молярная масса.
- •29. Уравнение идеального газа
- •30. Распределение молекул по скорости в идеальном газе
- •31. Степени свободы. Теорема о распределении энергии по степеням свободы.
- •32. Теплопередача. Макроскопическая работа. Первый этап (начало) термодинамики.
- •33. Явления переноса. Средняя длина свободного пробега молекул.
- •34. Энтропия
- •35. Взаимодействие зарядов. Их знаки. Единичный заряд. Закон Кулона.
- •36. Напряженность электростатического поля. Определение. Напряженность точечного заряда. Силовые линии.
- •43. Проводники в электрическом поле
- •44. Поляризация диэлектриков. Поляризуемость. Вектор электрического смещения. Электрическая проницаемость.
- •45. Электрический ток. Вектор плотности тока.
- •47. Действие магнитного поля на проводники с током и движущиеся заряды.
- •50. Теорема Гаусса для магнитного поля. Циркуляция магнитного плоя.
- •51. Магнитное поле в веществе. Различные типы магнетиков.
- •52. Емкость проводников и конденсаторов. Емкость шарового конденсатора
- •53. Энергия заряженного конденсатора. Плотность электрической энергии. Энергия системы заряженных тел.
- •54. Электромагнитная индукция
- •55. Магнитный поток
- •56.Работа при перемещении витка с током в постоянном магнитном поле.
- •57. Самоиндукция. Коэффициенты индуктивности.
- •58. Энергия магнитного поля.
- •59. Ток смещения.
- •60. Система уравнений Максвелла.
- •61. Следствия из уравнений Максвелла.
- •62. Электромагнитные волны.
55. Магнитный поток
Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, равная
где Вn
— В cos a — проекция вектора В на направление
нормали к площадке dS (а — угол между
векторами n
и В); dS
— вектор, модуль которого равен dS, а
направление его совпадает с направлением
нормали n
к площадке.
Поток вектора В может быть как положительным, так и отрицательным в зависимости от знака cos а (определяется выбором положительного направления нормали n). Поток вектора B связывают с контуром, по которому течет ток. В таком случае положительное направление нормали к контуру связывается с током правилом правого винта. Следовательно, магнитный поток, создаваемый контуром через поверхность ограниченную им самим, всегда положителен.
Поток вектора магнитной индукции Фв через произвольную поверхность S равен
Для однородного
поля и плоской поверхности, расположенной
перпендикулярно вектору В, Вn
— В — const и
Из этой формулы определяется единица магнитного потока вебер (Вб): 1 Вб — магнитный поток, проходящий сквозь плоскую поверхность площадью 1 м2, расположенную перпендикулярно однородному магнитному полю, индукция которого равна 1 Тл (1 Вб = 1_Тл • м2).
Теорема Гаусса для поля В: поток вектора магнитной индукции сквозь любую замкнутую поверхность равен нулю:
Эта теорема отражает факт отсутствия магнитных зарядов, вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми.
Итак, для потоков векторов В и Ё сквозь замкнутую поверхность в вихревом и потенциальном полях получаются различные выражения.
В качестве примера
рассчитаем поток вектора В сквозь
соленоид. Магнитная индукция однородного
поля внутри соленоида с сердечником с
магнитной проницаемостью
равна
Магнитный поток
сквозь один виток соленоида площадью
S равен
а полный магнитный поток, сцепленный со всеми витками соленоида и называемый потокосцеплением,
56.Работа при перемещении витка с током в постоянном магнитном поле.
57. Самоиндукция. Коэффициенты индуктивности.
Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био —Савара — Лапласа, пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорционален току в контуре:
(126.1)
где L — коэффициент пропорциональности, называемый индуктивностью контура.
При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться ЭДС.
Возникновение ЭДС индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией.
Из выражения (126.1) определяется единица индуктивности генри (Гн): 1 Гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб: 1 Гн = 1 Вб/А = 1 В • с/А.
Рассчитаем
индуктивность бесконечно длинного
соленоида. Полный магнитный поток сквозь
соленоид (потокосцепление) равен
Подставив это выржение в формулу (126.1), получим
т.е. индуктивность соленоида зависит от числа N витков соленоида, его длины l, площади S и магнитной проницаемости «мю» вещества, из которого изготовлен сердечник соленоида.
Можно показать, что индуктивность контура в общем случае зависит только от геометрической формы контура, его размеров и магнитной проницаемости той среды, в которой он находится. В этом смысле индуктивность контура — аналог электрической емкости уединенного проводника, которая также зависит только от формы проводника, его размеров в диэлектрической проницаемости среды.
Применяя к явлению самоиндукции закон Фарадея, получим, что ЭДС самоиндукции
Если контур не
деформируется и магнитная проницаемость
среды не изменяется (в дальнейшем будет
показано, что последнее условие
выполняется не всегда), то L — const и
где знак «—» обусловлен правилом Ленца,
согласно которому наличие индуктивности
в контуре приводит к замедлению изменения
тока в нем.
Если ток со временем
возрастает, то
т.е. ток самоиндукции направлен навстречу
току, обусловленному внешним источником,
и замедляет его возрастание. Если ток
со временем убывает, то
т. е. индукционный ток имеет такое же
направление, как и убывающий ток в
контуре и замедляет его убывание. Таким
образом, контур, обладая определенной
индуктивностью, приобретает электрическую
инертность, заключающуюся в том, что
любое изменение тока тормозится тем
сильнее, чем больше индуктивность
контура.