
- •Кинематика материальной точки. Тело отсчета. Прямолинейное движение. Движение тела в пространстве. Декартова система координат. Система отсчета.
- •Радиус-вектор, скорость и ускорение материальной точки, их связь с дек. Координатами.
- •Движение по криволинейной траектории. Танг. И нормальное ускорения.
- •Кинематика твердого тела. Поступательное движение твердого тела...
- •Первый закон Ньютона – закон инерции. Инерциальная система отсчета.
- •Масса. Импульс. Второй закон Ньютона. Сила.
- •Третий закон Ньютона. Формулирование задачи движения n материальных точек. Начальные условия.
- •Силы в механике. Гравитационные силы. Закон всемирного тяготения. Принцип суперпозиции. Сила упругости. Закон Гука.
- •Сила трения. Сухое трение. Трение покоя. Трение скольжения.
- •Вопрос 10. Неинерциальные системы отсчета. Силы инерции.
- •Вопрос 11. Замкнутые системы. Законы сохранения.
- •12. Закон сохранения импульса
- •Вопрос 18. Механика абсолютно твердого тела. Вращение вокруг неподвижной оси. Момент инерции.
- •Вопрос 19. Теорема Штейнера. Вычисление моментов инерции. Примеры.
- •Вопрос 22. Пружинный маятник. Энергия маятника.
- •Вопрос 23. Физический маятник
- •Вопрос 24. Затухающие колебания. Дифференциальное уравнение, вид решения.
- •Вопрос 25. Вынужденные колебания. Резонанс
- •Вопрос 26: Волновые процессы. Уравнение плоской волны.
- •Вопрос 27: Макроскопическая система большого количества молекул
- •28. Массы и размеры молекул. Атомная масса. Молярная масса.
- •29. Уравнение идеального газа
- •30. Распределение молекул по скорости в идеальном газе
- •31. Степени свободы. Теорема о распределении энергии по степеням свободы.
- •32. Теплопередача. Макроскопическая работа. Первый этап (начало) термодинамики.
- •33. Явления переноса. Средняя длина свободного пробега молекул.
- •34. Энтропия
- •35. Взаимодействие зарядов. Их знаки. Единичный заряд. Закон Кулона.
- •36. Напряженность электростатического поля. Определение. Напряженность точечного заряда. Силовые линии.
- •43. Проводники в электрическом поле
- •44. Поляризация диэлектриков. Поляризуемость. Вектор электрического смещения. Электрическая проницаемость.
- •45. Электрический ток. Вектор плотности тока.
- •47. Действие магнитного поля на проводники с током и движущиеся заряды.
- •50. Теорема Гаусса для магнитного поля. Циркуляция магнитного плоя.
- •51. Магнитное поле в веществе. Различные типы магнетиков.
- •52. Емкость проводников и конденсаторов. Емкость шарового конденсатора
- •53. Энергия заряженного конденсатора. Плотность электрической энергии. Энергия системы заряженных тел.
- •54. Электромагнитная индукция
- •55. Магнитный поток
- •56.Работа при перемещении витка с током в постоянном магнитном поле.
- •57. Самоиндукция. Коэффициенты индуктивности.
- •58. Энергия магнитного поля.
- •59. Ток смещения.
- •60. Система уравнений Максвелла.
- •61. Следствия из уравнений Максвелла.
- •62. Электромагнитные волны.
33. Явления переноса. Средняя длина свободного пробега молекул.
Отклонение системы от равновесного состояния приводит к возникновению термодинамических потоков, связанных с переносом вещества, энергии, импульса и т.д. из одной части занимаемого объёма в другую. Подобные процессы получили название явлений переноса.
При наличии в среде различной концентрации примеси возникают диффузионные потоки, т.е. перенос массы (явление диффузии); в случае разной температуры - тепловые потоки, т.е. перенос энергии (явление теплопроводности); при различной скорости течения потоков - перенос импульса (явление вязкости); при наложении электрического поля на систему свободных зарядов – потоки зарядов (ток), т.е. перенос зарядов (явление электропроводности).
Длина свободного пробега молекулы — это среднее расстояние (обозначаемое λ), которое частица пролетает за время свободного пробега от одного столкновения до следующего.
Средним
временем свободного пробега
молекулы называется время, в течение
которого молекула движется без
столкновений, т.е. это среднее время
между двумя последовательными
соударениями:
.
Длина
свободного пробега каждой молекулы
различна, поэтому в кинетической
теории вводится
понятие средней
длины свободного пробега (<λ>).
Величина <λ> является характеристикой
всей совокупности молекул газа при
заданных значениях давления и температуры:
,
где σ=πd2
— эффективное
сечение молекулы, n — концентрация
молекул.
34. Энтропия
Энтропия (от греч. ἐντροπία — поворот, превращение) в естественных науках — мера беспорядка системы, состоящей из многих элементов. В частности, в статистической физике — мера вероятности осуществления какого-либо макроскопического состояния.
Понятие энтропии впервые было введено Клаузиусом в термодинамике в 1865 году для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая, как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при обратимых процессах, тогда как в необратимых — её изменение всегда положительно.
,
где dS — приращение энтропии; δQ — минимальная теплота, подведенная к системе; T — абсолютная температура процесса;
Термодинамическая энтропия — термодинамическая функция, характеризующая меры неупорядоченности системы, то есть неоднородности расположения движения её частиц термодинамической системы.
Энтропия — функция состояния системы, равная в равновесном процессе количеству теплоты, сообщённой системе или отведённой от системы, отнесённому к термодинамической температуре системы.
Энтропия — функция, устанавливающая связь между макро- и микро- состояниями; единственная функция в физике, которая показывает направленность процессов. Энтропия — функция состояния системы, которая не зависит от перехода из одного состояния в другое, а зависит только от начального и конечного положения системы.
35. Взаимодействие зарядов. Их знаки. Единичный заряд. Закон Кулона.
Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.
Совокупность всех известных экспериментальных фактов позволяет сделать выводы:
Существует два рода электрических зарядов, условно названных положительными и отрицательными.
Заряды могут передаваться от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.
Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.
Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда.
В изолированной
системе алгебраическая сумма зарядов
всех тел остается постоянной:
|
Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.
С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e=-1,6*10^(-19) Кл.
В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.
Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.
Закон Кулона:
Силы
взаимодействия неподвижных зарядов
прямо пропорциональны произведению
модулей зарядов и обратно пропорциональны
квадрату расстояния между ними:
|
Силы взаимодействия
подчиняются третьему закону Ньютона:
Они
являются силами отталкивания при
одинаковых знаках зарядов и силами
притяжения при разных знаках.
Кулон –
это заряд, проходящий за 1 с через
поперечное сечение проводника при силе
тока 1 А. Коэффициент k в
системе СИ обычно записывают в виде:
,
где
|