
- •Кинематика материальной точки. Тело отсчета. Прямолинейное движение. Движение тела в пространстве. Декартова система координат. Система отсчета.
- •Радиус-вектор, скорость и ускорение материальной точки, их связь с дек. Координатами.
- •Движение по криволинейной траектории. Танг. И нормальное ускорения.
- •Кинематика твердого тела. Поступательное движение твердого тела...
- •Первый закон Ньютона – закон инерции. Инерциальная система отсчета.
- •Масса. Импульс. Второй закон Ньютона. Сила.
- •Третий закон Ньютона. Формулирование задачи движения n материальных точек. Начальные условия.
- •Силы в механике. Гравитационные силы. Закон всемирного тяготения. Принцип суперпозиции. Сила упругости. Закон Гука.
- •Сила трения. Сухое трение. Трение покоя. Трение скольжения.
- •Вопрос 10. Неинерциальные системы отсчета. Силы инерции.
- •Вопрос 11. Замкнутые системы. Законы сохранения.
- •12. Закон сохранения импульса
- •Вопрос 18. Механика абсолютно твердого тела. Вращение вокруг неподвижной оси. Момент инерции.
- •Вопрос 19. Теорема Штейнера. Вычисление моментов инерции. Примеры.
- •Вопрос 22. Пружинный маятник. Энергия маятника.
- •Вопрос 23. Физический маятник
- •Вопрос 24. Затухающие колебания. Дифференциальное уравнение, вид решения.
- •Вопрос 25. Вынужденные колебания. Резонанс
- •Вопрос 26: Волновые процессы. Уравнение плоской волны.
- •Вопрос 27: Макроскопическая система большого количества молекул
- •28. Массы и размеры молекул. Атомная масса. Молярная масса.
- •29. Уравнение идеального газа
- •30. Распределение молекул по скорости в идеальном газе
- •31. Степени свободы. Теорема о распределении энергии по степеням свободы.
- •32. Теплопередача. Макроскопическая работа. Первый этап (начало) термодинамики.
- •33. Явления переноса. Средняя длина свободного пробега молекул.
- •34. Энтропия
- •35. Взаимодействие зарядов. Их знаки. Единичный заряд. Закон Кулона.
- •36. Напряженность электростатического поля. Определение. Напряженность точечного заряда. Силовые линии.
- •43. Проводники в электрическом поле
- •44. Поляризация диэлектриков. Поляризуемость. Вектор электрического смещения. Электрическая проницаемость.
- •45. Электрический ток. Вектор плотности тока.
- •47. Действие магнитного поля на проводники с током и движущиеся заряды.
- •50. Теорема Гаусса для магнитного поля. Циркуляция магнитного плоя.
- •51. Магнитное поле в веществе. Различные типы магнетиков.
- •52. Емкость проводников и конденсаторов. Емкость шарового конденсатора
- •53. Энергия заряженного конденсатора. Плотность электрической энергии. Энергия системы заряженных тел.
- •54. Электромагнитная индукция
- •55. Магнитный поток
- •56.Работа при перемещении витка с током в постоянном магнитном поле.
- •57. Самоиндукция. Коэффициенты индуктивности.
- •58. Энергия магнитного поля.
- •59. Ток смещения.
- •60. Система уравнений Максвелла.
- •61. Следствия из уравнений Максвелла.
- •62. Электромагнитные волны.
Кинематика материальной точки. Тело отсчета. Прямолинейное движение. Движение тела в пространстве. Декартова система координат. Система отсчета.
Кинематика - это раздел физики, посвящённый математическому описанию движения без анализа причин, приводящих к его возникновению или изменению.
Материальная точка, понятие, вводимое в механике для обозначения тела, размерами и формой которого можно пренебречь по условию задачи.
Тело отсчета - произвольно выбранное тело, относительно которого определяется положение движущейся материальной точки (или тела).
Прямолинейное движение — механическое движение, при котором вектор перемещения ∆r не меняется по направлению и по величине равен длине пути, пройденного телом.
Движение
тел совершается в пространстве с течением
времени. Пространство в механике мы
рассматриваем, как трехмерное евклидово
пространство. Время является скалярной,
непрерывно изменяющейся величиной. В
задачах кинематики время
принимают
за независимую переменную (аргумент). Все
другие переменные величины (расстояния,
скорости и т. д.) рассматриваются как
изменяющиеся с течением времени, т, е.
как функции времени
.
Кинематически задать движение или закон движения тела - значит задать положение этого тела относительно данной системы отсчета в любой момент времени. Для задания движения точки можно применять один из следующих трех способов: 1) векторный, 2) координатный, 3) естественный.
Естественным способом задания движения удобно пользоваться в тех случаях, когда траектория движущейся точки известна заранее.
Системой координат называется совокупность одной или более пересекающихся координатных осей, точки, в которой эти оси пересекаются, – начала координат – и единичных отрезков на каждой из осей. Каждая точка в системе координат определяется упорядоченным набором нескольких чисел – координат. В конкретной невырожденной координатной системе каждой точке соответствует один и только один набор координат.
Если в качестве координатных осей берутся прямые, перпендикулярные друг другу, то система координат называется прямоугольной (или ортогональной). Прямоугольная система координат, в которой единицы измерения по всем осям равны друг другу, называется ортонормированной (декартовой) системой координат. В декартовой системе координат, положение точки А в данный момент времени по отношению к этой системе характеризуется тремя координатами x, y, z или радиус-вектором, проведенным из начала координат в данную точку.
При движении
материальной точки её координаты с
течением времени изменяются. В общем
случае её движение определяется
скалярными уравнениями:
|
x = x x=x(t), y = y (t), z = z (t). |
Система отсчёта — это совокупность тела отсчёта, системы координат и системы отсчёта времени, связанных с этим телом, по отношению к которому изучается движение (или равновесие) каких-либо других материальных точек или тел.
Радиус-вектор, скорость и ускорение материальной точки, их связь с дек. Координатами.
При движении
материальной точки её координаты с
течением времени изменяются. В общем
случае её движение определяется
скалярными уравнениями: x=x(t);
y=y(t);
z=z(t).
Эти уравнения эквивалентны векторному
уравнению r=r(t)=rXi+rYj+rZk,
|
|
|
|
где х, у, z – проекции радиус-вектора на оси координат; i, j, k – единичные векторы (орты), направленные по соответствующим осям.
Радиус-вектор — вектор, задающий положения точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.
Для произвольной точки в пространстве, радиус-вектор — это вектор, идущий из начала координат в эту точку.
Длина радиус-вектора, или его модуль, определяет расстояние, на котором точка находится от начала координат, а стрелка указывает направление на эту точку пространства.