
- •1. Принципы и методы естественно-научного познания действительности.
- •2. Погрешности измерений. Виды ошибок и их оценка. Обработка результатов прямых и косвенных измерений.
- •3. Размерность физических величин.
- •4. Виды материи и движения.
- •5. Инерциальные системы отсчёта. Принцип относительности механического движения.
- •6. Эффект Доплера и его использование на транспорте.
- •7. Фундаментальные взаимодействия и универсальные физические постоянные.
- •8. Гравитационное взаимодействие. Солнечная система.
- •9. Механистическая картина Мира и основные законы механики Ньютона.
- •10. Законы сохранения в механике, использование законов сохранения в расчетах реактивного движения.
- •11. Работа, энергия, мощность. Единицы измерения работы, энергии, мощности.
- •12. Концепция физического поля. Виды полей и их характеристики.
- •13. Электромагнитная концепция. Практическое использование закона электромагнитной индукции в электрических аппаратах.
- •14. Колебания и волны. Резонансные явления и их использование.
- •15. Гармонические колебания. Параметры и способы изображения синусоидальных величин.
- •16. Классификация волн. Шкала электромагнитных волн.
- •17. Свойства волн. Необычайные волны (ударные, солитоны)
- •18. Концепция атомизма и её развитие. Постулаты Бора.
- •19. Концепция корпускулярно-волнового дуализма. Двойственная природа света. Какие опыты подтверждают эту двойственность?
- •20. Модуляция как технология передачи информации электромагнитной волной.
- •21. Самоорганизация и деградация как две тенденции развития открытых систем.
- •22. Статические и термодинамические свойства макросистем.
- •23. Термодинамические параметры состояния системы. Уравнение связи основных параметров.
- •24. Теплота и теплоемкость. Энтальпия и энтропия. Единицы измерения этих величин.
- •25. Первое начало термодинамики.
- •26. Цикл Карно. Второе начало термодинамики. Представление круговых процессов (циклов) в pv и ts диаграммах.
- •27. Роль химии в жизни общества. Атом. Молекула. Ион. Основные определения.
- •29. Связь между строением атомов и свойствами химических элементов.
- •30. Набор четырех квантовых чисел и состояние электронов в атоме.
- •31. Химическая связь. Виды химической связи.
- •32. Структурная химия. Изомеры.
- •33. Катализ. Роль катализаторов в химических реакциях.
- •34. Ученье о химических процессах. Процесс промышленного электролиза.
- •35. Периодическая система химических элементов д.И. Менделеева.
- •36. Учение о составе вещества. Основные стехиометрические законы.
- •37. Биологические уровни организации материи.
- •38. Нуклеиновые кислоты, их назначение и роль в живых организмах.
- •39. Клеточная теория организации живой материи. Роль белков в клетке.
- •40. Эволюционные теории развития. Кювье и его теория катастроф.
- •41. Работы Ламарка и Дарвина по эволюции видов.
- •42. Три закона Менделя.
- •43. Хромосомная теория наследственности.
- •44. Энергия и мощность. Виды энергии. Особенности и преимущества электрической энергии.
- •46. Электрическая энергия переменного тока и ее использование на транспорте.
- •47. Активная, реактивная и полная электрическая мощность. Коэффициент мощности.
- •48. Цифровые технологии, организация систем управления на интегральных микросхемах.
43. Хромосомная теория наследственности.
Теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, т.е. преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом.
С развитием хромосомной теории наследственности было установлено, что гены, расположенные в одной хромосоме, составляют одну группу сцепления и должны наследоваться совместно; число групп сцепления равно числу пар хромосом, постоянному для каждого вида организмов, признаки, зависящие от сцепленных генов, также наследуются совместно. Вследствие этого закон независимого комбинирования признаков (3й)должен иметь ограниченное применение; независимо должны наследоваться признаки, гены которых расположены в разных (негомологичных) хромосомах.
Хромосомная теория наследственности, объясняя закономерности наследования признаков у животных и растительных организмов, играет важную роль в с/х науке и практике. Она вооружает селекционеров методами выведения пород животных и сортов растений с заданными свойствами.
44. Энергия и мощность. Виды энергии. Особенности и преимущества электрической энергии.
Энергия — скалярная физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие.
Механика различает потенциальную энергию (или, в более общем случае, энергия взаимодействия тел или их частей между собой или с внешними полями) и кинетическую энергию (энергия движения). Их сумма называется полной энергией.
Энергией обладают все виды полей. По этому признаку различают: электромагнитную (разделяемую иногда на электрическую и магнитную энергии), гравитационную и ядерную энергии (также может быть разделена на энергию слабого и сильного взаимодействий).
Термодинамика рассматривает внутреннюю энергию и иные термодинамические потенциалы.
В химии рассматриваются такие величины как энергия связи и энтальпия, имеющие размерность энергии, отнесённой к количеству вещества.
Энергия взрыва иногда измеряется в тротиловом эквиваленте.
Мощность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени,
к этому промежутку времени.
Электрическая энергия.
Электрическую энергию легко превратить в механическую энергию движения, в тепловую энергию с регулированием температуры в широких пределах, в видимое и невидимое излучение, в электромагнитные колебания, которые используются не только для передачи информации на расстояние, но и для воздействия на биологический объект, при сушке, обогреве и т. д.
Электрическая энергия вырабатывается на электростанциях, расположенных, как правило, у источников первичной энергии. ГЭС, ТЭС, ТЭЦ. Экономическая выгодность.
45. Простые электрические цепи. Режим работы и расчет цепей. Электрическая цепь — совокупность устройств, предназначенных для протекания электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий сила тока и напряжение. Электрические цепи подразделяют на неразветвленные (во всех элементах ее течет один и тот же ток) и разветвленные (в каждой ветви течет свой ток). Ветвь - участок цепи, образованный последовательно соединенными элементами и заключенный между двумя узлами. Изображение электрической цепи с помощью условных знаков называют электрической схемой. Самая простая электрическая цепь состоит из:
источника тока
потребителя электроэнергии (лампа, электроплитка, электродвигатель, электробытовые приборы)
замыкающего и размыкающего устройства (выключатель, кнопка, рубильник)
соединительных проводов
В зависимости от нагрузки различают следующие режимы работы:
номинальный
режим холостого хода
короткого замыкания
согласованный режим
При номинальном режиме электротехнические устройства работают в условиях, указанных в паспортных данных завода-изготовителя.
Режим холостого хода возникает при обрыве цепи или отключении сопротивления нагрузки. Режим короткого замыкания получается при сопротивлении нагрузки, равном нулю. Ток короткого замыкания в несколько раз превышает номинальный ток. Режим короткого замыкания является аварийным. Согласованный режим - это режим передачи от источника к сопротивлению нагрузки наибольшей мощности. Согласованный режим наступает тогда, когда сопротивление нагрузки становится равным внутреннему сопротивлению источника. При этом в нагрузке выделяется максимальная мощность.
Расчет цепей.
1. Закон Ома. Устанавливает, что сила постоянного электрического тока I в проводнике прямо пропорциональна разности потенциалов (напряжению) U между двумя фиксированными точками этого проводника:
RI = U
R – Коэффициент пропорциональности = активное сопротивление (резистор)
I – Сила тока
U – Напряжение
2. Общее сопротивление цепи. Последовательное и параллельное сопротивление.