
- •Минский государственный высший авиационный колледж электрорадиоизмерения
- •Предисловие
- •Введение
- •Тема 5 генераторы измерительных сигналов
- •5.1. Общие сведения об источниках измерительных сигналов Общие сведения и классификация измерительных генераторов
- •Общие принципы генерации гармонических колебаний
- •Принцип действия измерительных генераторов
- •5.2 Низкочастотные измерительные генераторы
- •Низкочастотные генераторы основных колебаний
- •Низкочастотные генераторы на биениях
- •Цифровые низкочастотные генераторы
- •5.3. Высокочастотные измерительные генераторы
- •Высокочастотные генераторы сигналов
- •Сверхвысокочастотные генераторы сигналов
- •5.4 Импульсные генераторы
- •Генераторы одиночных и периодических импульсов
- •Генераторы кодовых комбинаций импульсов
- •Тема 6 электронно-лучевые осциллографы
- •6.1 Общие сведения, структурная схема и основные параметры электронно-лучевых осциллографов Общие сведения
- •Обобщенная структурная схема
- •Основные характеристики осциллографов Канал вертикального отклонения
- •Канал горизонтального отклонения
- •6.2 Особенности функционирования основных узлов осциллографов Порядок формирования развертки
- •Непрерывная линейная развертка
- •Синусоидальная развертка
- •Работа основных функциональных узлов
- •Канал вертикального отклонения
- •Канал горизонтального отклонения (канал X)
- •Канал управления яркостью
- •Калибраторы амплитуды и длительности
- •6.3 Основные типы осциллографов Универсальные осциллографы
- •Скоростные осциллографы
- •Стробоскопические осциллографы
- •6.4. Осциллографические измерения
- •1 Визуальное наблюдение
- •2 Измерение амплитуды напряжения и временных интервалов
- •Измерение вольтамперных характеристик
- •Измерение частоты
- •Тема 7 измерение частоты, разности фаз и интервалов времени
- •7.1 Общие сведения о частотных, временных и фазовых характеристиках электромагнитных колебаний
- •7.1.1 Общие сведения
- •7.1.2. Аналоговые методы измерения частоты
- •7.2 Цифровой метод измерения частоты
- •7.2.1 Принцип действия цифрового частотомера
- •7.2 Погрешности счета цифровых частотомеров
- •7.3 Измерения временных характеристик сигналов
- •7.3.1 Измерение периода электромагнитных колебаний
- •7.3.2 Измерение интервалов времени
- •7.4 Измерение фазовых сдвигов электрических сигналов
- •7.4.1 Общие сведения
- •7.4.2 Электронно-счетный метод измерения фазовых сдвигов.
- •Тема 8 измерение спектра и нелинейных искажений электрических сигналов
- •8.1 Общие сведения об анализе спектра
- •8.1.1 Общие принципы анализа спектра электромагнитных колебаний
- •8.1.2 Основные методы анализа спектра электромагнитных колебаний
- •Тема 9. Измерение параметров электрорадиоцепей, полупроводниковых приборов и интегральных схем
- •9.1. Измерение параметров элементов электрических цепей с сосредоточенными параметрами
- •9.1.1 Общие сведения об измеряемых величинах
- •9.1.2 Измерение сопротивлений резисторов методом омметра, вольтметра-амперметра
- •9.1.3 Мостовой и резонансный методы измерения r, c, l
- •3 U . Измерение емкости конденсаторов, индуктивности и добротности катушек индуктивности
- •4. Измерение емкостей конденсаторов, индуктивностей и добротности катушек индуктивности резонансным методом
- •9.2. Измерение параметров элементов цепей с распределенными параметрами
- •9.2.1. Общие положения
- •9.2.2 Измерение параметров цепей свч с помощью измерительных линий
- •9.2.3. Измерение параметров полупроводниковых диодов и транзисторов
5.2 Низкочастотные измерительные генераторы
Низкочастотные ИГ используются при исследовании, настройке и регулировке акустической, медицинской, геофизической и радиовещательной аппаратуры. Они могут использоваться для модуляции колебаний высокочастотных генераторов, также в качестве источников питания различных схем. Синусоидальная форма генерируемых сигналов позволяет использовать низкочастотные ИГ для контроля нелинейных искажений, возникающих в измерительной аппаратуре при подключении к ней испытываемой нагрузки. В зависимости от способов получения требуемой частоты низкочастотные генераторы делятся на генераторы основных колебаний и генераторы на биениях.
Низкочастотные генераторы основных колебаний
Рассмотрим принцип действия генераторов основных колебаний. Такие генераторы обычно собираются на реактивных элементах и активных сопротивлениях (RC и LC – типа). Кроме того, они обязательно содержат органы настройки, регулировки и индикации. Типовая структурная схема низкочастотного генератора основных колебаний изображена на рисунке 5.4.
Задающий генератор в такой схеме может представлять собой LC или RC – генератор.
Рисунок 5.4 – Типовая структурная схема низкочастотного генератора
Он обеспечивает форму и стабильность уровня выходных сигналов. С выхода ЗГ сигнал поступает на усилитель (У), который обычно является усилителем мощности и выполняется по схеме операционного усилителя. Нагрузкой усилителя обычно является аттенюатор, обеспечивающий изменение выходного сигнала в широких пределах. Установка опорного значения напряжения на входе аттенюатора и его плавная регулировка производится потенциометром R и контролируется встроенным вольтметром.
Низкочастотные генераторы на биениях
Такие генераторы обычно включают в себя два генератора, один из которых работает на одной фиксированной частоте, а второй имеет возможность плавно изменять свою частоту. Структурная схема такого генератора изображена на рисунке 5.5. В приведенной схеме частота генератора регулируемой частоты должна отличаться от частоы генератора фиксированной частоты в пределах звукового диапазона, т.е. ΔF = f1 – f2 ≈ 20 – 30000 Гц. Колебания обоих генераторов подаются на смеситель, где смешиваются, в результате чего на выходе смесителя образуются комбинации частот ± mf2 ± nf1. фильтрации выделяется уже непосредственно сигнал звуковой частоты, который поступает на усилитель. С выхода усилителя сформированный сигнал, частота которого равна ΔF, поступает на выходное устройство. Уровень выходного сигнала контролируется вольтметром.
Рисунок 5.5 – Структурная схема генератора на биениях
Такие колебания поступают на вход фильтра НЧ, где после фильтрации выделяется уже непосредственно сигнал звуковой частоты, который поступает на усилитель. С выхода усилителя сформированный сигнал, частота которого равна ΔF, поступает на выходное устройство. Уровень выходного сигнала контролируется вольтметром.
Цифровые низкочастотные генераторы
Цифровые генераторы имеют ряд преимуществ перед аналоговыми. Они удобнее в эксплуатации, имеют более высокое быстродействие, простую установку требуемой частоты, более наглядную индикацию. Цифровые генераторы позволяют осуществить автоматическую перестройку частоты по заданной программе, работать в системе с цифровыми средствами обработки информации. Наиболее перспективными в этом отношении являются генераторы, построенные на принципе цифроаналогового преобразования. В них реализуется метод формирования квазисинусоидальных сигналов при помощи цифроаналоговых преобразователей (ЦАП). Метод состоит в том, что синусоидальный сигнал аппроксимируется с известной степенью точности кусочно-ступенчатым сигналом, мало отличающимся от синусоидального сигнала.
Самый простой вид аппроксимации – ступенчатая. Она заключается в представлении синусоидального колебания напряжением ступенчатой формы, мало отличающейся от синусоиды (рисунок 5.6, а). Аппроксимируемое синусоидальное напряжение u(t) = Um sin ωt дискретизируют во времени равномерно с шагом Δt и в интервале, разделяющим два соседних момента времени ti и ti+1. Синусоидальное напряжение заменяют напряжением постоянного тока – ступенькой, высота которой равна значению аппроксимируемого напряжения в момент ti (u(ti) = Um sin ωti). В результате такой замены вместо кривой синусоидальной формы получают ступенчатую кривую, изображенную на рисунке 5.6, а.
При периоде гармонического колебания Т число ступенек p, приходящихся на один период, определяется шагом дискретизации p = Т/Δt. Если число ступенек оставить постоянным, то изменять период генерируемого колебания можно изменением шага дискретизации, т.к. Т = Δt p. В итоге, уравнение ступенчатой кривой можно записать в виде u(iΔt) = Um sin (iωΔt) или учитывая, что ti = iΔt, и ω = 2π/T, окончательно имеем u(ti) = Um sin (i2π/p).
Для реализации данного процесса может быть использована схема, изображенная на рисунке 5.6, б. Кварцевый генератор вырабатывает короткие импульсы с периодом следования Т. На выходе делителя частоты с регулируемым коэффициентом деления k, получается новая последовательность импульсов с периодом следования Δt = kT, равным шагу дискретизации.
a
Делитель частоты
Кварцевый генератор
Счетчик
ЦАП
Усилитель с ФНЧ

Выход
б
Рис. 5.6. Структурная схема цифрового генератора низкой частоты
Импульсы поступают в счетчик емкостью i. Кодовая комбинация, определяемая числом i импульсов, накопленных в счетчике, передается в ЦАП. Последний вырабатывает напряжение, соответствующие числу i, т.е. u(iΔt) = Um sin (i2π/p). Таким образом, формируется p ступенек аппроксимируемой кривой. При накоплении p импульсов счетчик переполняется и сбрасывается в нуль. С приходом (p+1) импульса начинается формирование нового периода ступенчатой кривой. Частоту формируемого колебания при фиксированном числе ступенек p регулируют, меняя шаг дискретизации Δt, что достигается изменением коэффициента деления k делителя частоты.