
- •Минский государственный высший авиационный колледж электрорадиоизмерения
- •Предисловие
- •Введение
- •Тема 5 генераторы измерительных сигналов
- •5.1. Общие сведения об источниках измерительных сигналов Общие сведения и классификация измерительных генераторов
- •Общие принципы генерации гармонических колебаний
- •Принцип действия измерительных генераторов
- •5.2 Низкочастотные измерительные генераторы
- •Низкочастотные генераторы основных колебаний
- •Низкочастотные генераторы на биениях
- •Цифровые низкочастотные генераторы
- •5.3. Высокочастотные измерительные генераторы
- •Высокочастотные генераторы сигналов
- •Сверхвысокочастотные генераторы сигналов
- •5.4 Импульсные генераторы
- •Генераторы одиночных и периодических импульсов
- •Генераторы кодовых комбинаций импульсов
- •Тема 6 электронно-лучевые осциллографы
- •6.1 Общие сведения, структурная схема и основные параметры электронно-лучевых осциллографов Общие сведения
- •Обобщенная структурная схема
- •Основные характеристики осциллографов Канал вертикального отклонения
- •Канал горизонтального отклонения
- •6.2 Особенности функционирования основных узлов осциллографов Порядок формирования развертки
- •Непрерывная линейная развертка
- •Синусоидальная развертка
- •Работа основных функциональных узлов
- •Канал вертикального отклонения
- •Канал горизонтального отклонения (канал X)
- •Канал управления яркостью
- •Калибраторы амплитуды и длительности
- •6.3 Основные типы осциллографов Универсальные осциллографы
- •Скоростные осциллографы
- •Стробоскопические осциллографы
- •6.4. Осциллографические измерения
- •1 Визуальное наблюдение
- •2 Измерение амплитуды напряжения и временных интервалов
- •Измерение вольтамперных характеристик
- •Измерение частоты
- •Тема 7 измерение частоты, разности фаз и интервалов времени
- •7.1 Общие сведения о частотных, временных и фазовых характеристиках электромагнитных колебаний
- •7.1.1 Общие сведения
- •7.1.2. Аналоговые методы измерения частоты
- •7.2 Цифровой метод измерения частоты
- •7.2.1 Принцип действия цифрового частотомера
- •7.2 Погрешности счета цифровых частотомеров
- •7.3 Измерения временных характеристик сигналов
- •7.3.1 Измерение периода электромагнитных колебаний
- •7.3.2 Измерение интервалов времени
- •7.4 Измерение фазовых сдвигов электрических сигналов
- •7.4.1 Общие сведения
- •7.4.2 Электронно-счетный метод измерения фазовых сдвигов.
- •Тема 8 измерение спектра и нелинейных искажений электрических сигналов
- •8.1 Общие сведения об анализе спектра
- •8.1.1 Общие принципы анализа спектра электромагнитных колебаний
- •8.1.2 Основные методы анализа спектра электромагнитных колебаний
- •Тема 9. Измерение параметров электрорадиоцепей, полупроводниковых приборов и интегральных схем
- •9.1. Измерение параметров элементов электрических цепей с сосредоточенными параметрами
- •9.1.1 Общие сведения об измеряемых величинах
- •9.1.2 Измерение сопротивлений резисторов методом омметра, вольтметра-амперметра
- •9.1.3 Мостовой и резонансный методы измерения r, c, l
- •3 U . Измерение емкости конденсаторов, индуктивности и добротности катушек индуктивности
- •4. Измерение емкостей конденсаторов, индуктивностей и добротности катушек индуктивности резонансным методом
- •9.2. Измерение параметров элементов цепей с распределенными параметрами
- •9.2.1. Общие положения
- •9.2.2 Измерение параметров цепей свч с помощью измерительных линий
- •9.2.3. Измерение параметров полупроводниковых диодов и транзисторов
6.4. Осциллографические измерения
1 Визуальное наблюдение
Визуальное наблюдение сигналов осуществляется по осциллограммам, поэтому важное значение имеет неискаженное их воспроизведение для детального исследования.
Визуальное исследование сигнала начинается с выбора осциллографа. Выбрав нужный осциллограф необходимо подключить его к источнику питающего напряжения, установить оптимальные размеры и яркость осциллограмм сигнала, выбрать режим работы и вид синхронизации, откалибровать (выбрать требуемые значения коэффициентов вертикальной и горизонтальной разверток). Проводя визуальное исследование сигнала необходимо знать о тех искажениях, которые могут возникать при наблюдении осциллограмм.
Существуют некоторые типичные виды искажений осциллограмм (рисунок 6.20) )
Рисунок 6.20 – Примеры искажений осциллограмм
На рисунке 6.20 можно выделить следующие искажения:
а) обусловлено обратным ходом луча;
б) фон сетевого напряжения;
в) неправильный выбор синхронизации ГР (не виден фронт импульса);
г) спад вершины импульса обусловлен завалом частотной характеристики канала Y в области низких частот;
д) большое время нарастания переходной характеристики (оба фронта импульса пологи);
е) неестественно ровная вершина – следствие ограничений в УВО.
2 Измерение амплитуды напряжения и временных интервалов
Измерение амплитуды напряжения и временных интервалов – основные процессы, выполняемые с помощью осциллографа. Для отсчета значений этих величин применяют метод калиброванных шкал, компенсационный и метод сравнения.
Метод калиброванных шкал применяют для измерения параметров сигнала на прямоугольной шкале — сетке, имеющей равноотстоящие вертикальные и горизонтальные линии. Как правило, предусматривается регулируемая подсветка шкалы, улучшающая условия измерения. Размеры шкалы согласованы с рабочей площадью экрана ЭЛТ; коэффициенты отклонения и развертки (масштабные коэффициенты) приводятся по отношению к делению шкалы. Процесс измерения заключается в подсчете числа делений шкалы, укладывающихся в интересующий интервал. Перевод в значения напряжения и длительности, осуществляется домножением измеренной величины на масштабный коэффициент (с учетом множителя растяжки).
Для достижения минимальных погрешностей нужно стремиться к тому, чтобы изображение исследуемого сигнала занимало 80 – 90 % рабочей площади экрана. В этом случае можно уменьшить погрешность измерений в 1,5 – 2 раза по сравнению с паспортной погрешностью используемого осциллографа.
Для успешного применения метода калиброванных шкал перед измерениями следует произвести калибровку осциллографа, т. е. проверку значений масштабных коэффициентов, и при необходимости – их корректировку.
Сигналы от калибраторов подают на вход канала Y. Размеры изображения сравнивают с установленным масштабом. Если наблюдается расхождение между точно известными параметрами калибрационных сигналов и измеренными по шкале, то с помощью плавных регулировок усиления канала Y и длительности развертки устанавливают необходимое соответствие.
Метод калиброванных шкал для измерения параметров прямоугольных импульсов. Размер изображения импульса устанавливается так, чтобы его амплитуда занимала всю шкалу. При этом калибровка по оси Y может не соблюдаться. Затем производится отсчет длительностей фронта tф и среза tср и длительности импульса tи в делениях шкалы, причем tф и tср измеряют между уровнями 0,1 и 0,9, а tи—по уровню 0,5. Для удобства измерений шкала осциллографа обычно имеет пунктирные линии, соответствующие отсчетным уровням. Пересчет в значения длительности осуществляется домножением на коэффициент развертки с учетом множителя растяжки. После установки калиброванного масштаба по оси Y производится измерение амплитуды, а также величины выброса импульса.
измерений шкала осциллографа обычно имеет пунктирные линии, соответствующие отсчетным уровням. Пересчет в значения длительности осуществляется домножением на коэффициент развертки с учетом множителя растяжки. После установки калиброванного масштаба по оси Y производится измерение амплитуды, а также величины выброса импульса.
Метод калиброванных шкал является основным методом измерений для большинства осциллографов; точность осциллографа обычно указывается применительно к данному методу.
Компенсационный метод позволяет увеличить точность измерения и применяется в осциллографах, содержащих усилитель Y с дифференциальными входами и генератор двойной развертки: Сущность метода состоит в компенсации измеряемой величины образцовой. При этом изображение на экране используется как нуль-индикатор. Выигрыш в точности здесь достигается исключением большинства погрешностей, связанных с нелинейностью отклонения и развертки, геометрическими искажениями ЭЛТ, параллаксом, дискретностью шкалы и пр.
Измерение амплитуд компенсационным методом производят в осциллографах с дифференциальными входами. На второй (инвертирующий) вход подают постоянное (опорное) напряжение от плавно регулируемого источника. Это может быть калибратор осциллографа или внешний источник, параметры которого известны или могут быть измерены (например, с помощью цифрового вольтметра). Изменением опорного напряжения производят совмещение минимального уровня сигнала с какой-либо горизонтальной риской шкалы. Значение опорного напряжения фиксируют. Затем совмещают с этой же риской максимальный уровень сигнала. Разность в значениях опорного напряжения равна амплитуде сигнала.
Компенсационный метод измерения длительности реализуют в осциллографах с двойной разверткой. При этом используют калиброванную задержку второй развертки. Осциллограф устанавливают в режим работы с задержанной разверткой и регулировкой задержки, передний фронт сигнала совмещают с вертикальной риской шкалы. Затем производят совмещение заднего фронта сигнала с этой же риской. Разность значений задержки в том и другом случаях равна длительности импульса.
Метод сравнения измеряемой величины с образцовой реализован в осциллографе С1-40. Для этого с помощью электронных коммутаторов на экране вместе с сигналом формируют две светящиеся точки, положение которых в пределах экрана может независимо регулироваться. Расстояние между точками по вертикали является образцовым для измерения напряжения, по горизонтали — для измерения длительности; значения образцовых величин считывают с органов регулировки положения точек. Процесс измерения заключается в совмещении точек с интересующим размером изображения. Таким образом, сравнение измеряемой и образцовой величин производят непосредственно на экране без использования шкалы. Это позволяет получить погрешность измерения не хуже 2%.
Измерение коэффициента амплитудной модуляции
Измерение коэффициента амплитудной модуляции производят путем отсчета максимального и минимального размера изображения амплитудно-модулированного сигнала непосредственно в делениях шкалы (рисунок 6.21, а).
Рисунок 6.21 – Измерение коэффициента амплитудной модуляции
Расчет ведут по формуле
m
=
%.
(6.12)
Иногда величины A и B удобнее измерять при синусоидальной развертке. Для этого отключают генератор развертки, а на вход X подают модулирующее напряжение. На экране получается изображение в виде трапеции (рисунок 6.21, б), по которому и определяют величины A и B, подставляемые в формулу (6.12).