Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ИСАКБТ 1.12.12.doc
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
2.64 Mб
Скачать

Раздел 3. Динамика раздел механики, в котором изучается движение материальных тел в пространстве в зависимости от действующих на них сил.

1. Динамика точки

Задача 6. В железнодорожных скальных выемках для защиты кюветов от попадания в них с откосов каменных осыпей устраивается «полка» DC. Учитывая возможность движения камня из наивысшей точки А откоса и полагая при этом его начальную скорость , определить наименьшую ширину полки b и скорость , с которой камень падает на нее. По участку АВ откоса, составляющему угол α с горизонтом и имеющему длину l, камень движется τ с. Коэффициент трения скольжения f камня на участке АВ считать постоянным, а сопротивлением воздуха пренебречь.

Дано: . Определить b и (рис. 10.3).

Рис. 10.3

Решение. Задачу разделим на два этапа. Первый – движение камня на участке АВ, второй – движение камня от точки В до С.

Первый этап. 1. Составление расчетной схемы. Ось проводим по направлению движения камня, ось - перпендикулярно к оси . Камень принимаем за материальную точку и показываем ее в текущем положении, изображаем действующие на камень (точку) силы: вес , нормальную реакцию и силу трения скольжения (рис. 10.4).

2.Выявление начальных условий.

При .

Рис. 10.4

3.Составление дифференциальных уравнений движения точки. Так как точка (камень) движется прямолинейно, то при направлении оси х вдоль траектории получим одно дифференциальное уравнение движения

;

сила трения

,

тогда

;

;

.

4.Интегрирование дифференциальных уравнений движения. Интегрируя дифференциальное уравнение дважды, получаем:

;

;

;

;

;

;

.

5.Определение постоянных интегрирования. Подставим начальные условия, т.е. в уравнения:

;

;

.

6.Нахождение неизвестных величин и исследование полученных результатов. После подстановки постоянных интегрирования С1 и С2 получаем уравнение скорости и уравнение движения:

;

.

Для момента времени τ, когда камень покидает участок АВ,

,

т.е.

;

.

Умножим первое уравнение на τ/2, после этого разделим его на второе. В результате получим:

; ;

.

Второй этап. Движение камня от точки В до точки С.

1.Составление расчетной схемы. Координатные оси покажем так, как это удобно для решения задачи, в нашем случае ось х параллельна горизонтали и проходит через точку В, ось у направляем вниз через точку В. Камень принимаем за материальную точку, показываем ее в текущем положении, изображаем действующую на камень силу тяжести (рис. 10.4).

2. Выявление начальных условий движения. При :

.

3.Составление дифференциальных уравнений движения. Так как движение точки происходит в плоскости ху, то число уравнений движения равно двум:

.

4.Интегрирование дифференциальных уравнений движения. Интегрируем дифференциальные уравнения дважды:

(a)

; (б)

(в)

. (г)

5. Определение постоянных интегрирования. Подставляем начальные условия: в уравнения (а – г):

,

откуда

.

6.Нахождение искомых величин и исследование полученных результатов. После подстановки постоянных интегрирования в уравнения (а –г) получаем следующие уравнения проекций скорости камня:

и уравнения его движения

.

Уравнение траектории камня найдем, исключив параметр t из уравнений движения:

;

– уравнение параболы.

В момент падения . Определим d из уравнения траектории:

; ;

.

Так как траекторией движения камня является ветвь параболы с положительными абсциссами ее точек, то d=2,11 м.

Минимальная ширина полки

.

Используя уравнение движения камня , найдем время Т движения камня от точки В до точки С

.

Скорость камня при падении найдем через проекции скорости на оси координат:

по формуле

.

Для момента падения t=T=0,53 c

.

Скорость камня при падении равна 12,8 м/с.