
- •1.Законы динамики. Основное уравнение динамики точки.
- •3. Принцип Даламбера для материальной точки. Примеры.
- •4. Дифференциальные уравнения движения точки в декартовых и естественных осях координат. Дифференциальные уравнения движения несвободной материальной точки в форме Эйлера.
- •5.Прямолинейное движение материальной точки .
- •6.Интегрирование ду движения в случаях , когда сила зависит от скорости, времени, координаты.
- •7. Колебания математического маятника.
- •9. Свободные колебания точки , частота и период колебания.
- •14. Понятие о механической системе. Основные определения. Свойства внутренних сил механической системы.
- •15. Масса системы. Центр масс , определение его положения. Положение центра масс при наличии оси или плоскости симметрии. Понятие о центре тяжести.
- •16. Моменты инерции твёрдого тела : полярные и осевые моменты. Зависимость между ними. Радиус инерции.
- •17. Центробежные моменты инерции. Центробежные моменты для тел , имеющих ось или плоскость симметрии.
- •18. Теорема Гюйгенса-Штейнера о вычислении моментов относительно параллельных осей.
- •19.Вычисление моментов инерции однородных тел : тонкая пластина , тонкий стержень , кольцо, цилиндр, конус .
- •20. Вычисление моментов инерции относительно произвольных осей.
- •21. Эллипсоид инерции. Центральные оси инерции. Экстремальные свойства моментов инерции.
- •22. Дифференциальные уравнения движения точек механической системы.
- •23. Теорема о движении центра масс. Закон сохранения движения центра масс.
- •24. Меры механического движения (количество движения , момент количества движения, кинетическая энергия) .
- •25. Меры силового воздействия (импульс силы , работа силы).
- •26. Количество движения. Теорема об изменении количества движения материальной точки.
- •27. Теорема об изменении количества движения механической системы в дифференциальной и интегральной форме. Закон сохранения количества движения.
- •28. Момент количества движения точки и механической системы относительно полюса и оси. Вычисление кинетического момента тела относительно оси вращения.
- •29. Теорема об изменении кинетического момента. Теорема Резаля. Кинетический момент при сложном движении тела . Закон сохранения кинетического момента.
- •30. Импульс силы . Импульс равнодействующей. Импульс внутренних сил.
- •31. Элементарная работа силы и момента. Работа равнодействующей. Работа внутренних сил мех. Сист. И твердого тела. Теоремы о работе силы.
- •32. Вычисление работы силы тяжести, сил трения скольжения и качения, силы упругости.
- •33. Работа постоянной силы во вращательном движении. Работа момента. Мощность силы и момента. Работа сил сопротивления качению.
- •34. Кинетическая энергия точки и механической системы.
- •35. Кинетическая энергия тела при поступательном движении, при вращении вокруг неподвижной оси и неподвижного полюса. Теорема Кенига о вычислении кинетической энергии тела при сложном движении.
- •36. Теорема об изменении кинетической энергии в дифференциальной и интегральной форме.
- •37. Силовое поле. Потенциальное силовое поле. Работа сил потенциального поля. Две задачи в теории потенциальных силовых полей.
- •38. Потенциальная энергия точки и механической системы.
- •39. Полная механическая энергия. Закон сохранения механической энергии.
- •40. Количество движения, момент количества движения и кинетическая энергия твердого тела.
- •41. Дифференциальные уравнения поступательного движения тел.
- •42. Дифференциальное уравнение вращения тела вокруг неподвижной оси. Колебания физического маятника.
- •43. Экспериментальные методы определения моментов инерции.
- •44. Дифференциальные уравнения плоского движения твердого тела.
- •45. Динамика сферического движения. Динамические уравнения Эйлера.
- •46. Приближенная теории гироскопов. Гироскоп с двумя, тремя степенями свободы. Гироскопический эффект, гироскопический момент.
- •47. Принцип Даламбера для механической системы. Главный вектор и главный момент сил инерции в различных случаях движения твердого тела.
- •48. Определение динамических реакций подшипников при вращательном движении твердого тела.
- •49. Связи и их классификация.
- •50. Возможные перемещения. Возможная и действительная работа. Понятие о степенях свободы. Идеальные связи.
- •51. Принцип возможных перемещений.
- •52. Общее уравнение динамики (принцип Даламбера- Лагранжа).
- •53. Обобщенные координаты, скорости, ускорения. Обобщенные силы. Определение числа степеней свободы систем тел.
- •54. Уравнение Лагранжа 2-го рода.
- •55. Уравнение Лагранжа 2-го рода для консервативных систем. Кинетический потенциал.
- •56. Основные гипотезы элементарной теории удара. Теорема об изменении количества движения и момента количества движения при ударе.
- •57. Коэффициент восстановления. Экспериментальное определение.
- •58.Упругий и неупругий удар. Прямой и косой удар по гладкой поверхности. Прямой удар двух шаров.
- •59. Теорема об изменении кинетической энергии при ударе (теорема Карно).
- •60. Действие ударной нагрузки на вращающееся тело. Центр удара.
18. Теорема Гюйгенса-Штейнера о вычислении моментов относительно параллельных осей.
Момент инерции твёрдого тела относительно оси не проходящей через центр масс равен сумме моментов инерции относительно центральной оси проходящей через центр масс и параллельной заданной и произведение массы тела на квадрат расстояния между осями.
где
JC — известный момент инерции относительно оси, проходящей через центр масс тела,
J — искомый момент инерции относительно параллельной оси,
m — масса тела,
d — расстояние между указанными осями.
19.Вычисление моментов инерции однородных тел : тонкая пластина , тонкий стержень , кольцо, цилиндр, конус .
Тонкий
стержень:
Тонкий цилиндр :
Тонкая
пластина:
Конус:
Тонкое
кольцо:
Шар:
20. Вычисление моментов инерции относительно произвольных осей.
Позволяет
найти момент инерции относительно любой
оси проходящей через оси координат и
составляющие угля
с
этими осями , через величины осевых и
центробежных моментов инерции этих
осей.
21. Эллипсоид инерции. Центральные оси инерции. Экстремальные свойства моментов инерции.
Центр эллипсоида находится в начале координат .
3 оси симметрии эллипсоида называются главными осями инерции , моменты инерции относительно главных осей называются главными моментами инерции.
Если в качестве осей координат принять главные оси инерции , то центробежные моменты инерции относительно этих осей будут равны нулю.
ЭЛЛИПСОИД
ИНЕРЦИИ -поверхность, характеризующая
распределение моментов инерции тела
относительно пучка осей, проходящих
через фиксированную точку О. Строится
Э. и. как геом. место концов отрезков OK=
1/
,
отложенных вдоль Ol от точки О, где Ol-
любая ось, проходящая через точку О; Il
- момент инерции тела относительно этой
оси (рис.). Центр Э. и. совпадает с точкой
О, а его ур-ние в произвольно проведённых
координатных осях Oxyz имеет вид
где Ix, Iy, Iz - осевые, а Ixу, Iyz, Lzx - центробежные моменты инерции тела относительно указанных координатных осей. В свою очередь, зная Э. и. для точки О, можно найти момент инерции относительно любой оси Оl, проходящей через эту точку, из равенства Il= 1/R2, измерив в соот-ветдтвующих единицах расстояние R = OK.
22. Дифференциальные уравнения движения точек механической системы.
Рассмотрим механическую систему, состоящую из n материальных точек Mi c массами mi (i = 1, 2, …, n), на каждую из которых действует равнодействующая внешних Fi(e) и внутренних Fi(i) сил.
Для каждой точки системы можно записать основное уравнение динамики:
miai = Fi(e) + Fi(i) , (i = 1, 2, …, n). (3.4)
Проектируя каждое из уравнений (3.4) на оси координат, получим систему 3n дифференциальных уравнений второго порядка, описывающих движение системы
(3.5)
(i = 1, 2, …, n). Эти уравнения и называются дифференциальными уравнениями движения системы. Вместе с соответствующими начальными условиями они образуют задачу Коши, решив которую, мы найдем закон движения механической системы.
О том, насколько сложной является поставленная задача можно судить хотя бы по тому, что к настоящему времени в общем виде она решена только для n = 2.