
- •1. Понятие признака и проблема его измерения. Неадекватность традиционной интерпретации значений признака. Проблема его существования.
- •2. Понятия латентной и наблюдаемой переменной. Проблема их соотнесения в социологии.
- •3. «Мягкие» и «жесткие» методы сбора данных. Их достоинства и недостатки [27 (издание 1998 года), 28].
- •4. Теория шкалирования как попытка совместить положительные стороны «мягкого» и «жесткого» подходов.
- •5. Основные цели методов одномерного шкалирования.
- •6. Понятие модели восприятия респондентом предлагаемых ему объектов (суждений). Рассмотрение введения такой модели как своеобразного подхода к «смягчению» процесса сбора данных.
- •7. Измерение установки методом Терстоуна: этапы процесса [7, с.73-75; 14, с.104-107; 15, с.62-64; 27, с. 102-105].
- •8. Геометрическая модель, «заложенная» в методе Терстоуна измерения установки.
- •Представление о мнении одного респондента об одном объекте
- •9. «Цена» получения интервальной шкалы при измерении установки методом Терстоуна.
- •10. Сбор данных методом парных сравнений. Его преимущества и недостатки по сравнению с методами прямых оценок объектов.
- •11. Свойства матрицы парных сравнений (полученной от одного респондента). Причины их нарушения. Способы преодоления этих нарушений.
- •12. Модель Терстоуна парных сравнений: предположения о характере восприятия респондентами шкалируемых объектов [7, с.56-60].
- •13. Модель Терстоуна парных сравнений: алгоритм получения искомых шкальных оценок [7, с.56-60].
- •15. Проблемы построения индексов [11, с. 138-151].
- •16. Измерение установки методом Лайкерта. Роль критерия согласованности ответов [14, с.107-109;16,с.244-245].
- •17. Шкалограммный анализ Гуттмана. Решение проблемы существования латентной переменной и выбора системы информативных признаков [14, с.110-113; 16, с.245-248; 27, с.98-102].
- •18. Общее представление о проективной технике [27, с. 139, 169-174].
- •20. Задачи, решаемые с помощью техники семантического дифференциала.
- •21. Основные принципы латентно-структурного анализа: постановка задачи [18, с.252; 20, с.99-109].
- •22. Основные принципы латентно-структурного анализа: соотношения, позволяющие получить описание латентных классов; интерпретация латентной переменной [18, с.252-255, 258; 20, с.104-107].
- •23. Основные принципы латентно-структурного анализа: соотношения, позволяющие отнести конкретного респондента к латентному классу [18, с.258].
- •24. Одномерное развертывание: решаемые задачи; модель восприятия респондентом предлагаемых ему объектов; процедура построения шкалы; свойства построенной шкалы [7, с.62-71].
- •25. Эмпирическая и числовая системы с отношениями. Понятие гомоморфизма между ними [7, с.8-12; 19, с.10-18].
- •26. Определение шкалы и ее допустимых преобразований [7, с.12-18; 19, с.18-25].
- •2 7. Основные типы шкал, использующихся в социологии. Отвечающие им допустимые преобразования.
- •28. Основные задачи репрезентационной теории измерений. Формальная адекватность математического метода. Цель построения интервальной шкалы [1, с.60-63; 7, с.24-27; 16, с.148-150; 19, с.10-18, 94-97].
- •29. Недостаточность формализма репрезентационной теории измерений для решения проблемы измерения в социологии [22, с.35-37].
- •30. Шкалы, промежуточные между номинальной и порядковой. «Неполноценный» порядок (частичное упорядочение, нарушение условия транзитивности) [27, с. 14 (частичный порядок)].
- •31. Типология шкал Кумбса по процедурам опроса и моделям поведения респондентов [7, с.49-51; 14, с.100-103].
- •32. Типология шкал Кумбса по упорядочению объектов и расстояний между ними [14, с.61-62].
- •33. Нечисловые измерения в социологии [1, с.10-12; 22, с.37-39].
- •34. Достоинства и недостатки номинальных шкал по сравнению со шкалами более высокого типа [26].
- •35. Экстенсивные и интенсивные величины в социологии [24].
- •36. Проблема надежности социологического измерения [16, с.251-274; 27, с.75-87 (изд-е 1987 года)].
- •37. Многомерное шкалирование: задачи, решаемые с его помощью [3, 6, 7].
- •38. Многомерное шкалирование: основные элементы формализма («вход», «выход», свойства матрицы близостей, функция расстояния, функция стресса, неоднозначность решения [3, 6, 7].
- •39. Основные модификации многомерного шкалирования: метрическое и неметрическое, индивидуальное, многомерное развертывание [3, 6, 7].
- •40. Роль социолога в процессе применения многомерного шкалирования: формирование исходных данных и интерпретация результатов [3, 6, 7].
33. Нечисловые измерения в социологии [1, с.10-12; 22, с.37-39].
Изучая некоторые закономерности, социолог приписывает рассматриваемым объектам такие математические конструкты, которые не являются числами. Например, при исследовании процессов, происходящих в малой группе, очень часто прибегают к теории графов. Каждому члену группы ставят в соответствие некоторую точку на плоскости - вершину графа. Две вершины соединяют отрезком (стрелкой), если два соответствующих этим точкам человека оказываются связанными определенным отношением (например, от первого человека (точки) проводится стрелка ко второй точке, если первый человек заявляет, что он хотел бы работать вместе со вторым). Полученная таким образом структура - граф - изучается известными способами, делаются выводы о внутригрупповых отношениях, степени устойчивости группы и т.д. Или другой пример. Нас интересует, как респонденты "в среднем" ранжируют политических лидеров А,Б,В,Г. Исходная информация - приписанная первому респонденту, отвечающая его взглядам ранжировка Б,В,А,Г (поскольку он именно так проранжировал лидеров), второму В,А,Г,Б и т.д. Цель - найти среднюю ранжировку. В последние годы разрабатывается статистика объектов нечисловой природы, позволяющая решить эту задачу
34. Достоинства и недостатки номинальных шкал по сравнению со шкалами более высокого типа [26].
Измерительные шкалы. Всего существует четыре типа шкал: шкала наименований (номинальная шкала), шкала порядка (порядковая или ординальная шкала), шкала интервалов и шкала отношений (абсолютная или пропорциональная шкала). Числа в этих шкалах обладают разными свойствами: они могут говорить о степени выраженности измеряемого признака, о количественных различиях между объектами и т.д. В зависимости от типа шкалы к числам могут быть применимы, а могут быть и неприменимы те или иные математические операции.
Шкала наименований. В этой шкале числа присвоенные объектам говорят только лишь о том, что эти объекты различаются. По сути, это классификационная шкала. Так, например, исследователь может приписать женщинам ноль, а мужчинам единицу, или наоборот, и это будет говорить только о том, что это два разных класса объектов. Чисел в шкале наименований может быть столько, сколько существует классов объектов подлежащих измерению, но ни сумма этих чисел, ни их разность, ни произведение не будут иметь никакого смысла, т.к. в шкале наименований не осуществима ни одна арифметическая операция. Числа в шкале наименований могут быть любыми, хотя, как правило, отрицательные не используются. Наиболее часто в психологических исследованиях используется дихотомическая шкала наименований, которая задается двумя числами – нулем и единицей.
Шкала порядка. Числа, присвоенные объектам в этой шкале будут говорить о степени выраженности измеряемого свойства у этих объектов, но, при этом, равные разности чисел не будут означать равных разностей в количествах измеряемых свойств. В зависимости от желания исследователя большее число может означать большую степень выраженности измеряемого свойства (как в шкале твердости минералов) или меньшую (как в таблице результатов спортивных соревнований), но в любом случае, между числами и соответствующими им объектами сохраняется отношение порядка. Шкала порядка задается положительными числами, и чисел в этой шкале может быть столько, сколько существует измеряемых объектов. Примеры шкал порядка в психологии: рейтинг испытуемых по какому-либо признаку, результаты экспертной оценки испытуемых и т.д.
Шкала интервалов. В отличии от двух предыдущих шкал в этой шкале существует единица измерения, либо реальная (физическая), либо условная, при помощи которой можно установить количественные различия между объектами в отношении измеряемого свойства. Равные разности чисел в этой шкале будут означать равные различия в количествах измеряемого свойства у разных объектов, или у одного и того же объекта в разные моменты времени. Однако, то, что одно число оказывается в несколько раз больше другого не обязательно говорит о таких же отношениях в количествах измеряемых свойств. В шкале интервалов может быть задействована вся числовая ось, но при этом ноль не указывает на отсутствие измеряемого свойства, т.к. нулевая точка часто является произвольной, как в шкале температуры по Цельсию, либо вообще отсутствует, как в некоторых шкалах психологических тестов. Благодаря таким свойствам, шкала интервалов получила широкое распространение в психологии, на ней основано большинство психодиагностических шкал: интеллекта, самооценки, а также стандартизированных шкал (стенов, станайнов).
Шкала отношений. В шкале отношений также существует единица измерения, при помощи которой объекты можно упорядочить в отношении измеряемого свойства и установить количественные различия между ними. Особенностью шкалы отношений является то, что к числам в этой шкале применимы все математические операции, а это значит, что отношения между числами соответствуют, или пропорциональны отношениям между количествами измеряемых свойств у разных объектов. В этой шкале обязательно, по, крайней мере теоретически, присутствует ноль, который говорит об абсолютном отсутствии измеряемого свойства. Большинство ныне существующих физических шкал (длины, массы, времени, температуры по Кельвину и т.д.) являются яркими примерами шкал отношений. В психологии из шкал отношений наиболее часто используются шкала вероятностей и шкала ''сырых'' баллов (количество решенных заданий, количество ошибок, количество положительных ответов и т.д.).
Между самими шкалами тоже существуют отношения порядка. Каждая из перечисленных шкал является шкалой более высокого порядка по отношению к предыдущей шкале. Так, например, измерения произведенные в шкале отношений можно перевести в шкалу интервалов, из шкалы интервалов – в шкалу порядка и т.д., но обратная процедура будет невозможна, т.к. при переходе к шкалам более низкого порядка часть информации (о единицах измерения, количествах свойств) теряется.
Тем не менее, это не всегда означает, что шкалы более высокого порядка предпочтительней по отношению к шкалам более низкого порядка, а в ряде случаев – даже, наоборот. Например, количество правильно выполненных заданий в тесте интеллекта (шкала отношений) гораздо выгодней представить в стандартизированной шкале IQ (шкала интервалов), а множество разнообразных поведенческих реакций в виде типа личности (шкала наименований). Наконец, существуют такие признаки объектов, которые можно измерить в любой шкале, как возраст, и такие, к измерению которых подходит только одна шкала, как, например, пол. На выбор измерительной шкалы, таким образом, могут оказывать влияние многие факторы, как достоинства самой шкалы, так и специфика самого объекта измерения.