
- •Введение
- •Глава 1. Основы теории радиолокации.
- •1.1. Общая характеристика радиолокационного канала.
- •1.2. Диапазоны длин волн, используемые в радиолокации.
- •1.3. Импульсные сигналы
- •1.4. Частотные спектры импульсных сигналов
- •1.5. Сложные радиолокационные сигналы
- •1.5.1. Противоречие между различными предельно достижимыми параметрами рлс.
- •1.5.2. Частотно-модулированные импульсы
- •1.6. Фазоманипулированные импульсы
- •1.6.1. Понятие о фазовой псевдослучайной манипуляции.
- •Глава 2 импульсный метод измерения дальности
- •2.1. Условие однозначности измерения дальности.
- •2.2. Минимальная дальность действия импульсной рлс.
- •2.2.1. Принцип действия импульсной рлс кругового обзора
- •2.3. Измерение координат цели
- •2.3.1. Оптимальные методы измерения
- •2.4. Разрешающая способность рлс
- •2.4.1. Общие сведения.
- •2.4.2 Особенности повышения разрешающей способности.
- •2.4.3. Разрешающая способность рлс по углу.
- •2.5.Точность измерения координат цели
- •2.5.1. Внешние погрешности.
- •2.5.2. Инструментальная погрешность измерения дальности при визуальной индикации.
- •2.5.3 Систематическая погрешность измерения дальности.
- •2.5.4. Точность измерения угловых координат цели.
- •2.6. Цифровые методы съема координат цели
- •2.6.1. Рециркуляционный метод измерения малых временных интервалов.
- •2.6.2. Съем углового положения цели.
- •2.7. Дальность действия рлс
- •2.7.1. Дальность действия рлс в свободном пространстве для сосредоточенных целей
- •2.7.2. Анализ уравнения дальности.
- •2.7.3. Влияние распространения радиоволн в атмосфере на дальность действия рлс
- •2.7.4. Влияние отражения радиоволн от земной поверхности на уравнение дальности
- •2.7.5. Некоторые способы уменьшения влияния земли
- •2.7.6. Зона видимости рлс
- •Глава 3 принцип действия когерентных рлс
- •3.1. Эффект доплера в радиолокации
- •3.2. Когерентные доплеровские рлс с непрерывным излучением радиоволн
- •3.2.1. Доплеровские биения частоты.
- •3.2.2. Простейшая доплеровская рлс.
- •3.2.3. Доплеровская рлс с ненулевой промежуточной частотой.
- •3.2.4. «Гребенка» фильтров доплеровских частот.
- •3.2.5. Потенциальная точность измерения скорости.
- •3.3. Вторичный эффект доплера
- •3.3.1. Частота биений при вторичном эффекте Доплера.
- •3.3.2. Спектр биений при вторичном эффекте Доплера.
- •3.4. Когерентно-импульсный метод (истинно когерентные системы)
- •3.4.1. Когерентные радиоимпульсы.
- •3.4.2. Разновидности когерентно-импульсных систем
- •3.4.3. Принцип действия когерентно-импульсной рлс.
- •3.4.4. Когерентно-импульсные рлс с фазовым детектором на промежуточной частоте.
- •3.4.5. Слепые скорости цели.
- •3.5. Когерентно-импульсный метод (псевдокогерентные системы)
- •3.5.1. Принцип действия псевдокогерентной рлс с внутренней когерентностью.
- •3.5.2. Псевдокогерентная рлс с фазовым детектором на промежуточной частоте.
- •3.5.3. Рлс с внешней когерентностью.
- •3.6. Особенности когерентно-импульсной рлс при наличии взаимных перемещении рлс и объекта
- •3.6.1. Особенности сдц при движении рлс.
- •3.6.2. Ввод частоты компенсации.
- •3.7. Фазовый метод измерения дальности
- •3.7.1. Одночастотный фазовый метод.
- •3.7.2. Двухчастотный фазовый метод.
- •3.8. Частотный метод измерения дальности
- •Структурная схема простейшей рлс с чм.
- •3.8.2. Спектр преобразованного сигнала.
- •Особенности несимметричного пилообразного закона модуляции
- •Влияние движения цели на преобразованный сигнал.
- •Понятие об измерении дальности методом счета числа импульсов.
- •Разрешающая способность и точность.
- •3.9. Некоторые сравнительные характеристики импульсного и непрерывного методов
- •Глава 4 радиолокационные цели
- •4.1. Эффективная отражающая площадь целей
- •4.2. Понятие об эоп разнесенной рлс.
- •4.3. Влияние эффекта доплера в случае поверхностно-распределенных целей
- •4.3.1. «Парадокс гладкой земли».
- •4.3.2. Изочастотные линии.
- •4.3.3. Измерение угла сноса с помощью вторичного эффекта Доплера.
- •4.3.4. Объемно-распределенные цели
- •4.3.5. Поляризационная селекция объемно распределенных целей.
- •5.1.1. Воздействие шумов на полезный сигнал.
- •5.1.2. Критерии оптимального обнаружения.
- •5.1.3. Отношение правдоподобия.
- •5.1.4. Отношение правдоподобия для сигнала с полностью известными параметрами.
- •5.1.5. Корреляционный приемник для сигнала с неизвестной начальной фазой.
- •5.2. Согласованный фильтр (общие свойства)
- •5.2.1. Импульсная и частотная характеристики.
- •5.2.2. Отношение сигнал-помеха на выходе сф.
- •5.2.3. Коэффициент различимости.
- •5.3. Согласованные фильтры для некоторых сигналов
- •5.3.1. Сф для одиночных импульсов.
- •5.3.2. Квазиоптимальные фильтры для одиночных импульсов.
- •5.3.3. Сф для пачки импульсов.
- •5.4. Когерентное накопление
- •5.4.1. Когерентное накопление полностью известного сигнала и сигнала с неизвестной начальной фазой.
- •5.4.2. Объединение квадратурных каналов по модулю.
- •5.4.3. Корреляционно-фильтровая обработка.
- •5.5. Некогерентное накопление
- •5.5.I. Общие сведения об оптимальной обработке некогерентной пачки импульсов.
- •5.5.2. Число эффективно накапливаемых импульсов.
- •5.5.3. Понятие о характеристиках обнаружения некогерентных сигналов.
- •5.5.4. Пороговые сигналы при независимых флуктуациях.
- •5.6.2. Согласованный фильтр при действии смеси стационарной пассивной помехи и шумов.
- •5.6.3. Оптимальная обработка сигналов движущихся целей на фоне пассивных помех.
- •5.6.4. Системы оптимальной обработки сигналов с подавлением пассивной помехи.
- •Глава 6 устройства обработкирадиолокационных сигналов и борьбы с помехами
- •6.1. Общие сведения о первичной обработке радиолокационных сигналов
- •6.1.1. Общие сведения об автоматическом обнаружении.
- •6.2. Накопители с динамической памятью
- •6.2.1. Основные свойства аналоговых накопителей на линиях задержки с рециркуляцией.
- •6.2.3.Некоторые варианты пгф на линиях задержки.
- •6.2.4. Некоторые особенности построения рециркуляторов.
- •6.3. Аналоговые накопители со статической памятью
- •6.3.1.Индикатор с послесвечением.
- •6.3.2. Коммутируемые гребенчатые фильтры.
- •6.4. Автоматические дискретные цифровые обнаружители
- •6.4.1. Двоичное накопление.
- •6.4.2. Цифровой обнаружитель с «движущимся окном».
- •6.4.3. Обнаружение по совпадению (программные обнаружители).
- •6.4.4. Стабилизация вероятности ложной тревоги
- •6.4.5. Непараметрический знаковый обнаружитель.
- •6.4.6. Последовательный обнаружитель.
- •6.5. Подавители пассивной помехи системы сдц
- •6.5.1. Метод череспериодной компенсации.
- •6.5.2. Частотная характеристика системы чпк
- •6.5.3. Система многократной чпк.
- •6.5.4. Подавитель на дискретных фильтрах.
- •6.5.5. Слепые фазы.
- •6.5.6. Методы уменьшения числа зон слепых скоростей.
- •6.5.7. Помехи на дальности, превышающей интервал однозначности.
- •6.6. Цифровая фильтрация при обработке радиолокационных сигналов
- •6.6.1. Общие сведения о цифровой фильтрации.
- •6.6.2. Общие сведения о z-преобразовании.
- •6.6.3. Подавители системы сдц как цифровые фильтры.
- •6.6.4. Общая характеристика цифровой системы чпк
- •6.6.5. Цифровая система сдц с квадратурными каналами.
- •6.6.6. Цифровой рециркулятор.
- •6.6.7. Быстрое преобразование Фурье.
- •6.7. Адаптивные устройства, улучшающие работу системы сдц
- •6.7.1. Характеристика системы сдц при перегрузке.
- •6.7.2. Фиксатор помех.
- •6.7.3. Устройства борьбы с помехами от гидрометеообразований
- •Глава 2 32
- •Глава 3 78
- •Глава 4 121
- •Глава 5 131
- •Глава 6 162
3.2.4. «Гребенка» фильтров доплеровских частот.
В двух рассмотренных устройствах предполагалось, что полоса пропускания усилителей приемника рассчитана на диапазон ожидаемых доплеровских частот. Если имеется лишь одна цель, т. е. не требуется никакого разрешения по скорости, то достаточно иметь на выходе приемника простой частотомер, например, в виде счетчика. При наличии же множества целей спектр колебаний состоит из соответствующего числа спектральных линий. Для разделения этих линий, т. е. разрешения по скорости, необходимо произвести спектральный анализ принимаемого сигнала.
При последовательном спектральном анализе имеется один фильтр, перестраиваемый с определенной скоростью в диапазоне ожидаемых доплеровских частот. Время воздействия полезного сигнала на такой фильтр гораздо меньше, чем его общая длительность, что равносильно потерям полезной энергии. Параллельный спектральный анализ обычно осуществляется с помощью системы, состоящей из набора пф =f/F фильтров, где f - общая полоса ожидаемых доплеровских частот, Fф - полоса пропускания фильтров. При этом обеспечивается минимальное, время анализа без потерь полезного сигнала Тпар 1/Fф. При последовательном анализе это время возрастает до Тпос n/Fф.
Для получения максимальной чувствительности полоса пропускания отдельных фильтров должна быть согласована с шириной спектра. В частности, при расширении спектральных линий отраженного сигнала только из-за конечного времени облучения цели (например, при круговом обзоре) требуемая полоса фильтров Fф = 1/Tобл.
Для определения требуемой полосы пропускания фильтров при учете ускорения цели следует задаться некоторым конечным отрезком времени t, в течение которого частота под влиянием эффекта Доплера изменяется. Он должен быть не меньше, чем время нарастания переходных процессов в фильтре, т. е. t 1/Fф. В результате получаем
.
Если, например, цель совершает маневр с перегрузкой ар = 19,6 м/с2 (2g) (что довольно много для пассажирского самолета), то при = 10 см имеем Fф 20 Гц.
Знание ширины спектральных линий F позволяет, кроме того, определить потенциальную разрешающую способность по скорости. Из основного соотношения Fd = = 2vр/ находим vр = F/2.
При реализации набора фильтров могут быть использованы фильтры:
электромеханические,
кварцевые,
активные фильтры на полупроводниковых элементах.
Если набор фильтров установлен в канале промежуточной частоты, то их число должно быть в два раза больше по сравнению с видеочастотным каналом, однако при этом имеется возможность сохранить знак доплеровского сдвига частоты. В этом случае в РЛС на рис. 2.7 не нужен смеситель, связанный с генератором fпч, но этот генератор должен обладать высокой стабильностью. Структурная схема набора фильтров показана на рис. 2.8, а, а их частотная характеристика - на рис. 3.8, б: Центральные частоты отдельных фильтров равны fпч ± Fк, где к - номер фильтра относительно центрального.
Нулевая доплеровская частота соответствует центральной частоте фильтра fпч, остальные частоты ±Fд соответствуют фильтрам, настроенным на частоты fпч ± Fд. Таким образом, появление максимума сигнала на выходе того или иного из них позволяет судить не только о скорости, но и о ее знаке. Если требуется устранить помехи от
Рис. 3.8. «Гребенка» фильтров доплеровских частот
неподвижных объектов, то можно использовать режекторный фильтр, настроенный на центральную частоту fпч (рис. 3.8, б).