
- •Введение
- •Глава 1. Основы теории радиолокации.
- •1.1. Общая характеристика радиолокационного канала.
- •1.2. Диапазоны длин волн, используемые в радиолокации.
- •1.3. Импульсные сигналы
- •1.4. Частотные спектры импульсных сигналов
- •1.5. Сложные радиолокационные сигналы
- •1.5.1. Противоречие между различными предельно достижимыми параметрами рлс.
- •1.5.2. Частотно-модулированные импульсы
- •1.6. Фазоманипулированные импульсы
- •1.6.1. Понятие о фазовой псевдослучайной манипуляции.
- •Глава 2 импульсный метод измерения дальности
- •2.1. Условие однозначности измерения дальности.
- •2.2. Минимальная дальность действия импульсной рлс.
- •2.2.1. Принцип действия импульсной рлс кругового обзора
- •2.3. Измерение координат цели
- •2.3.1. Оптимальные методы измерения
- •2.4. Разрешающая способность рлс
- •2.4.1. Общие сведения.
- •2.4.2 Особенности повышения разрешающей способности.
- •2.4.3. Разрешающая способность рлс по углу.
- •2.5.Точность измерения координат цели
- •2.5.1. Внешние погрешности.
- •2.5.2. Инструментальная погрешность измерения дальности при визуальной индикации.
- •2.5.3 Систематическая погрешность измерения дальности.
- •2.5.4. Точность измерения угловых координат цели.
- •2.6. Цифровые методы съема координат цели
- •2.6.1. Рециркуляционный метод измерения малых временных интервалов.
- •2.6.2. Съем углового положения цели.
- •2.7. Дальность действия рлс
- •2.7.1. Дальность действия рлс в свободном пространстве для сосредоточенных целей
- •2.7.2. Анализ уравнения дальности.
- •2.7.3. Влияние распространения радиоволн в атмосфере на дальность действия рлс
- •2.7.4. Влияние отражения радиоволн от земной поверхности на уравнение дальности
- •2.7.5. Некоторые способы уменьшения влияния земли
- •2.7.6. Зона видимости рлс
- •Глава 3 принцип действия когерентных рлс
- •3.1. Эффект доплера в радиолокации
- •3.2. Когерентные доплеровские рлс с непрерывным излучением радиоволн
- •3.2.1. Доплеровские биения частоты.
- •3.2.2. Простейшая доплеровская рлс.
- •3.2.3. Доплеровская рлс с ненулевой промежуточной частотой.
- •3.2.4. «Гребенка» фильтров доплеровских частот.
- •3.2.5. Потенциальная точность измерения скорости.
- •3.3. Вторичный эффект доплера
- •3.3.1. Частота биений при вторичном эффекте Доплера.
- •3.3.2. Спектр биений при вторичном эффекте Доплера.
- •3.4. Когерентно-импульсный метод (истинно когерентные системы)
- •3.4.1. Когерентные радиоимпульсы.
- •3.4.2. Разновидности когерентно-импульсных систем
- •3.4.3. Принцип действия когерентно-импульсной рлс.
- •3.4.4. Когерентно-импульсные рлс с фазовым детектором на промежуточной частоте.
- •3.4.5. Слепые скорости цели.
- •3.5. Когерентно-импульсный метод (псевдокогерентные системы)
- •3.5.1. Принцип действия псевдокогерентной рлс с внутренней когерентностью.
- •3.5.2. Псевдокогерентная рлс с фазовым детектором на промежуточной частоте.
- •3.5.3. Рлс с внешней когерентностью.
- •3.6. Особенности когерентно-импульсной рлс при наличии взаимных перемещении рлс и объекта
- •3.6.1. Особенности сдц при движении рлс.
- •3.6.2. Ввод частоты компенсации.
- •3.7. Фазовый метод измерения дальности
- •3.7.1. Одночастотный фазовый метод.
- •3.7.2. Двухчастотный фазовый метод.
- •3.8. Частотный метод измерения дальности
- •Структурная схема простейшей рлс с чм.
- •3.8.2. Спектр преобразованного сигнала.
- •Особенности несимметричного пилообразного закона модуляции
- •Влияние движения цели на преобразованный сигнал.
- •Понятие об измерении дальности методом счета числа импульсов.
- •Разрешающая способность и точность.
- •3.9. Некоторые сравнительные характеристики импульсного и непрерывного методов
- •Глава 4 радиолокационные цели
- •4.1. Эффективная отражающая площадь целей
- •4.2. Понятие об эоп разнесенной рлс.
- •4.3. Влияние эффекта доплера в случае поверхностно-распределенных целей
- •4.3.1. «Парадокс гладкой земли».
- •4.3.2. Изочастотные линии.
- •4.3.3. Измерение угла сноса с помощью вторичного эффекта Доплера.
- •4.3.4. Объемно-распределенные цели
- •4.3.5. Поляризационная селекция объемно распределенных целей.
- •5.1.1. Воздействие шумов на полезный сигнал.
- •5.1.2. Критерии оптимального обнаружения.
- •5.1.3. Отношение правдоподобия.
- •5.1.4. Отношение правдоподобия для сигнала с полностью известными параметрами.
- •5.1.5. Корреляционный приемник для сигнала с неизвестной начальной фазой.
- •5.2. Согласованный фильтр (общие свойства)
- •5.2.1. Импульсная и частотная характеристики.
- •5.2.2. Отношение сигнал-помеха на выходе сф.
- •5.2.3. Коэффициент различимости.
- •5.3. Согласованные фильтры для некоторых сигналов
- •5.3.1. Сф для одиночных импульсов.
- •5.3.2. Квазиоптимальные фильтры для одиночных импульсов.
- •5.3.3. Сф для пачки импульсов.
- •5.4. Когерентное накопление
- •5.4.1. Когерентное накопление полностью известного сигнала и сигнала с неизвестной начальной фазой.
- •5.4.2. Объединение квадратурных каналов по модулю.
- •5.4.3. Корреляционно-фильтровая обработка.
- •5.5. Некогерентное накопление
- •5.5.I. Общие сведения об оптимальной обработке некогерентной пачки импульсов.
- •5.5.2. Число эффективно накапливаемых импульсов.
- •5.5.3. Понятие о характеристиках обнаружения некогерентных сигналов.
- •5.5.4. Пороговые сигналы при независимых флуктуациях.
- •5.6.2. Согласованный фильтр при действии смеси стационарной пассивной помехи и шумов.
- •5.6.3. Оптимальная обработка сигналов движущихся целей на фоне пассивных помех.
- •5.6.4. Системы оптимальной обработки сигналов с подавлением пассивной помехи.
- •Глава 6 устройства обработкирадиолокационных сигналов и борьбы с помехами
- •6.1. Общие сведения о первичной обработке радиолокационных сигналов
- •6.1.1. Общие сведения об автоматическом обнаружении.
- •6.2. Накопители с динамической памятью
- •6.2.1. Основные свойства аналоговых накопителей на линиях задержки с рециркуляцией.
- •6.2.3.Некоторые варианты пгф на линиях задержки.
- •6.2.4. Некоторые особенности построения рециркуляторов.
- •6.3. Аналоговые накопители со статической памятью
- •6.3.1.Индикатор с послесвечением.
- •6.3.2. Коммутируемые гребенчатые фильтры.
- •6.4. Автоматические дискретные цифровые обнаружители
- •6.4.1. Двоичное накопление.
- •6.4.2. Цифровой обнаружитель с «движущимся окном».
- •6.4.3. Обнаружение по совпадению (программные обнаружители).
- •6.4.4. Стабилизация вероятности ложной тревоги
- •6.4.5. Непараметрический знаковый обнаружитель.
- •6.4.6. Последовательный обнаружитель.
- •6.5. Подавители пассивной помехи системы сдц
- •6.5.1. Метод череспериодной компенсации.
- •6.5.2. Частотная характеристика системы чпк
- •6.5.3. Система многократной чпк.
- •6.5.4. Подавитель на дискретных фильтрах.
- •6.5.5. Слепые фазы.
- •6.5.6. Методы уменьшения числа зон слепых скоростей.
- •6.5.7. Помехи на дальности, превышающей интервал однозначности.
- •6.6. Цифровая фильтрация при обработке радиолокационных сигналов
- •6.6.1. Общие сведения о цифровой фильтрации.
- •6.6.2. Общие сведения о z-преобразовании.
- •6.6.3. Подавители системы сдц как цифровые фильтры.
- •6.6.4. Общая характеристика цифровой системы чпк
- •6.6.5. Цифровая система сдц с квадратурными каналами.
- •6.6.6. Цифровой рециркулятор.
- •6.6.7. Быстрое преобразование Фурье.
- •6.7. Адаптивные устройства, улучшающие работу системы сдц
- •6.7.1. Характеристика системы сдц при перегрузке.
- •6.7.2. Фиксатор помех.
- •6.7.3. Устройства борьбы с помехами от гидрометеообразований
- •Глава 2 32
- •Глава 3 78
- •Глава 4 121
- •Глава 5 131
- •Глава 6 162
2.6. Цифровые методы съема координат цели
Дискретное измерение времени запаздывания основано на заполнении этого интервала счетными импульсами, имеющими достаточно высокую и стабильную частоту повторения Fc, после чего с помощью счетчика определяется их число
NС = 2D Fc/c.
Схема простейшего устройства, работающего по такому принципу, изображена на рис. 2.19, а. Импульс синхронизатора РЛС посредством триггера открывает каскад совпадения, через который счетные импульсы поступают на счетчик («пуск»), а импульс цели закрывает его («стоп»). Счетчик отсчитывает число импульсов за указанный промежуток времени. Так как показание дальности изменится только тогда, когда число Nc изменится по крайней мере на единицу, то имеет место дискретность отсчета, равная Dd = с/2Fc.
Рис. 2.19. Съем дальности цифровым методом
На рис. 2.19, б показаны временные диаграммы импульсов при несогласованном положении импульса синхронизатора и счетных импульсов.
Устройство, показанное на рис. 2.19, а, позволяет за период повторения зондирующих импульсов измерить дальность только до одной цели, так как в момент прихода сигнального импульса цели поступление счетных импульсов на счетчик прекращается. Такое же действие может оказать помеха. Этот недостаток устраняется в схеме, показанной на рис. 2.20. Здесь импульс синхронизатора запускает генератор строба, который на время, равное 2Dmах/c, отпирает каскад совпадения для прохождения счетных импульсов. После окончания строба счет прекращается и двоичный счетчик возвращается в исходное состояние.
Рис. 2.20. Цифровой съем дальности до многих целей
Считывание текущей дальности происходит в момент поступления импульса цели на генератор импульсов считывания. Этот генератор представляет собой комбинацию триггера и каскада совпадения. Импульсы цели проходят в счетчик на считывание лишь по окончании переходных процессов в триггерах счетчиков. Для этого импульс цели запускает триггер, импульс которого совпадает со счетными лишь после задержки в ЛЗ на время, равное длительности переходных процессов п. Импульс на выходе каскада совпадения генератора импульсов переводит его триггер в исходное состояние и одновременно воздействует на каскады совпадения счетчика, который выдает число, соответствующее дальности до цели. Это число в двоичном коде может поступить в блок памяти ЭВМ. При этом процесс счета не прекращается и с приходом другого импульса цели выдается другое значение дальности.
Для уменьшения ошибки конца счета tк применяется нониусный метод, основанный на использовании дополнительной точной шкалы. На рис. 2.21 показаны импульсы цели «стоп» и серия счетных импульсов. Импульс «стоп» запускает нониусный генератор,
Рис 2.21. Нониусный метод измерения дальности
период колебаний которого Тп несколько, отличается от периода счетных импульсов Тс. Пусть Тн < Т0. Импульсы нониусного генератора прекращаются в момент совпадения счетного и нониусного импульсов. Такое совпадение наступает при выполнении условия tк = m (Тс - Тн), где m - целое число, фиксируемое по номеру нониусного импульса.
В этом методе величина tК измеряется с точностью до T = Тс - Тн. Однако с уменьшением этой разности повышаются требования к стабильности генераторов и удлиняется время отсчета. При этом методе может также заметно ухудшиться разрешение по дальности.