
- •Введение
- •Глава 1. Основы теории радиолокации.
- •1.1. Общая характеристика радиолокационного канала.
- •1.2. Диапазоны длин волн, используемые в радиолокации.
- •1.3. Импульсные сигналы
- •1.4. Частотные спектры импульсных сигналов
- •1.5. Сложные радиолокационные сигналы
- •1.5.1. Противоречие между различными предельно достижимыми параметрами рлс.
- •1.5.2. Частотно-модулированные импульсы
- •1.6. Фазоманипулированные импульсы
- •1.6.1. Понятие о фазовой псевдослучайной манипуляции.
- •Глава 2 импульсный метод измерения дальности
- •2.1. Условие однозначности измерения дальности.
- •2.2. Минимальная дальность действия импульсной рлс.
- •2.2.1. Принцип действия импульсной рлс кругового обзора
- •2.3. Измерение координат цели
- •2.3.1. Оптимальные методы измерения
- •2.4. Разрешающая способность рлс
- •2.4.1. Общие сведения.
- •2.4.2 Особенности повышения разрешающей способности.
- •2.4.3. Разрешающая способность рлс по углу.
- •2.5.Точность измерения координат цели
- •2.5.1. Внешние погрешности.
- •2.5.2. Инструментальная погрешность измерения дальности при визуальной индикации.
- •2.5.3 Систематическая погрешность измерения дальности.
- •2.5.4. Точность измерения угловых координат цели.
- •2.6. Цифровые методы съема координат цели
- •2.6.1. Рециркуляционный метод измерения малых временных интервалов.
- •2.6.2. Съем углового положения цели.
- •2.7. Дальность действия рлс
- •2.7.1. Дальность действия рлс в свободном пространстве для сосредоточенных целей
- •2.7.2. Анализ уравнения дальности.
- •2.7.3. Влияние распространения радиоволн в атмосфере на дальность действия рлс
- •2.7.4. Влияние отражения радиоволн от земной поверхности на уравнение дальности
- •2.7.5. Некоторые способы уменьшения влияния земли
- •2.7.6. Зона видимости рлс
- •Глава 3 принцип действия когерентных рлс
- •3.1. Эффект доплера в радиолокации
- •3.2. Когерентные доплеровские рлс с непрерывным излучением радиоволн
- •3.2.1. Доплеровские биения частоты.
- •3.2.2. Простейшая доплеровская рлс.
- •3.2.3. Доплеровская рлс с ненулевой промежуточной частотой.
- •3.2.4. «Гребенка» фильтров доплеровских частот.
- •3.2.5. Потенциальная точность измерения скорости.
- •3.3. Вторичный эффект доплера
- •3.3.1. Частота биений при вторичном эффекте Доплера.
- •3.3.2. Спектр биений при вторичном эффекте Доплера.
- •3.4. Когерентно-импульсный метод (истинно когерентные системы)
- •3.4.1. Когерентные радиоимпульсы.
- •3.4.2. Разновидности когерентно-импульсных систем
- •3.4.3. Принцип действия когерентно-импульсной рлс.
- •3.4.4. Когерентно-импульсные рлс с фазовым детектором на промежуточной частоте.
- •3.4.5. Слепые скорости цели.
- •3.5. Когерентно-импульсный метод (псевдокогерентные системы)
- •3.5.1. Принцип действия псевдокогерентной рлс с внутренней когерентностью.
- •3.5.2. Псевдокогерентная рлс с фазовым детектором на промежуточной частоте.
- •3.5.3. Рлс с внешней когерентностью.
- •3.6. Особенности когерентно-импульсной рлс при наличии взаимных перемещении рлс и объекта
- •3.6.1. Особенности сдц при движении рлс.
- •3.6.2. Ввод частоты компенсации.
- •3.7. Фазовый метод измерения дальности
- •3.7.1. Одночастотный фазовый метод.
- •3.7.2. Двухчастотный фазовый метод.
- •3.8. Частотный метод измерения дальности
- •Структурная схема простейшей рлс с чм.
- •3.8.2. Спектр преобразованного сигнала.
- •Особенности несимметричного пилообразного закона модуляции
- •Влияние движения цели на преобразованный сигнал.
- •Понятие об измерении дальности методом счета числа импульсов.
- •Разрешающая способность и точность.
- •3.9. Некоторые сравнительные характеристики импульсного и непрерывного методов
- •Глава 4 радиолокационные цели
- •4.1. Эффективная отражающая площадь целей
- •4.2. Понятие об эоп разнесенной рлс.
- •4.3. Влияние эффекта доплера в случае поверхностно-распределенных целей
- •4.3.1. «Парадокс гладкой земли».
- •4.3.2. Изочастотные линии.
- •4.3.3. Измерение угла сноса с помощью вторичного эффекта Доплера.
- •4.3.4. Объемно-распределенные цели
- •4.3.5. Поляризационная селекция объемно распределенных целей.
- •5.1.1. Воздействие шумов на полезный сигнал.
- •5.1.2. Критерии оптимального обнаружения.
- •5.1.3. Отношение правдоподобия.
- •5.1.4. Отношение правдоподобия для сигнала с полностью известными параметрами.
- •5.1.5. Корреляционный приемник для сигнала с неизвестной начальной фазой.
- •5.2. Согласованный фильтр (общие свойства)
- •5.2.1. Импульсная и частотная характеристики.
- •5.2.2. Отношение сигнал-помеха на выходе сф.
- •5.2.3. Коэффициент различимости.
- •5.3. Согласованные фильтры для некоторых сигналов
- •5.3.1. Сф для одиночных импульсов.
- •5.3.2. Квазиоптимальные фильтры для одиночных импульсов.
- •5.3.3. Сф для пачки импульсов.
- •5.4. Когерентное накопление
- •5.4.1. Когерентное накопление полностью известного сигнала и сигнала с неизвестной начальной фазой.
- •5.4.2. Объединение квадратурных каналов по модулю.
- •5.4.3. Корреляционно-фильтровая обработка.
- •5.5. Некогерентное накопление
- •5.5.I. Общие сведения об оптимальной обработке некогерентной пачки импульсов.
- •5.5.2. Число эффективно накапливаемых импульсов.
- •5.5.3. Понятие о характеристиках обнаружения некогерентных сигналов.
- •5.5.4. Пороговые сигналы при независимых флуктуациях.
- •5.6.2. Согласованный фильтр при действии смеси стационарной пассивной помехи и шумов.
- •5.6.3. Оптимальная обработка сигналов движущихся целей на фоне пассивных помех.
- •5.6.4. Системы оптимальной обработки сигналов с подавлением пассивной помехи.
- •Глава 6 устройства обработкирадиолокационных сигналов и борьбы с помехами
- •6.1. Общие сведения о первичной обработке радиолокационных сигналов
- •6.1.1. Общие сведения об автоматическом обнаружении.
- •6.2. Накопители с динамической памятью
- •6.2.1. Основные свойства аналоговых накопителей на линиях задержки с рециркуляцией.
- •6.2.3.Некоторые варианты пгф на линиях задержки.
- •6.2.4. Некоторые особенности построения рециркуляторов.
- •6.3. Аналоговые накопители со статической памятью
- •6.3.1.Индикатор с послесвечением.
- •6.3.2. Коммутируемые гребенчатые фильтры.
- •6.4. Автоматические дискретные цифровые обнаружители
- •6.4.1. Двоичное накопление.
- •6.4.2. Цифровой обнаружитель с «движущимся окном».
- •6.4.3. Обнаружение по совпадению (программные обнаружители).
- •6.4.4. Стабилизация вероятности ложной тревоги
- •6.4.5. Непараметрический знаковый обнаружитель.
- •6.4.6. Последовательный обнаружитель.
- •6.5. Подавители пассивной помехи системы сдц
- •6.5.1. Метод череспериодной компенсации.
- •6.5.2. Частотная характеристика системы чпк
- •6.5.3. Система многократной чпк.
- •6.5.4. Подавитель на дискретных фильтрах.
- •6.5.5. Слепые фазы.
- •6.5.6. Методы уменьшения числа зон слепых скоростей.
- •6.5.7. Помехи на дальности, превышающей интервал однозначности.
- •6.6. Цифровая фильтрация при обработке радиолокационных сигналов
- •6.6.1. Общие сведения о цифровой фильтрации.
- •6.6.2. Общие сведения о z-преобразовании.
- •6.6.3. Подавители системы сдц как цифровые фильтры.
- •6.6.4. Общая характеристика цифровой системы чпк
- •6.6.5. Цифровая система сдц с квадратурными каналами.
- •6.6.6. Цифровой рециркулятор.
- •6.6.7. Быстрое преобразование Фурье.
- •6.7. Адаптивные устройства, улучшающие работу системы сдц
- •6.7.1. Характеристика системы сдц при перегрузке.
- •6.7.2. Фиксатор помех.
- •6.7.3. Устройства борьбы с помехами от гидрометеообразований
- •Глава 2 32
- •Глава 3 78
- •Глава 4 121
- •Глава 5 131
- •Глава 6 162
Министерство транспорта и коммуникаций Республики Беларусь
Департамент по авиации
«Минский государственный высший авиационный колледж»
М. С. ЖЕЛУДКЕВИЧ
ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАДИОЛОКАЦИИ
КУРС ЛЕКЦИЙ
Минск 2008
БВК 39.571.55
УДК 621.396.96(075)
Желудкевич М.С.
Теоретические основы радиолокации: Учебник для вузов. -== Минск: 2008 198 с., ил. 156
Излагаются принципы построения когерентных и некогерентных радиолокационных станций. Рассмотрены свойства целей, оптимальная обработка сигналов и методы борьбы с помехами, способы обзора пространства, обработка и отображение информации. В учебном пособии излагается материал о цифровой и пространственно - временной обработке, системе адаптации и др. Пособие написано в соответствии с современным требованием радиолокации и тенденциями развития радиолокационной техники гражданской авиации.
Для студентов вузов гражданской авиации. Может быть полезен студентам радиотехнических факультетов других вузов, а также инженерам, связанными с эксплуатацией РЛС.
Введение
Выполнение регулярных и безопасных полетов в условиях все возрастающей интенсивности воздушного движения требует применения большого количества радиотехнических средств, в частности радиолокационных. Роль радиолокации возрастает еще больше в связи с переходом к автоматизации самолетовождения и управления воздушным движением.
Основным источником информации о воздушной обстановке в системах УВД являются импульсные РЛС. При этом для УВД по трассам применяются РЛС с дальностью 350-450 км, а в районе аэропортов с дальностью 100-200 км. Так как используемые РЛС, как правило, двухкоординатные (дальность, азимут), то третья координата транслируется по «вторичному» каналу (РЛС с активным ответом). Система, включающая РЛС с пассивным и активным ответами и устройство трансляции радиолокационной информации по радиоканалу или по кабелю на пульт управления, именуется радиолокационным комплексом.
Вводятся автоматизированные системы - АС УВД, в которых процессы сбора, обработки и отображения информации, а также анализа воздушной обстановки производятся с помощью ЭВМ. Решение о необходимости изменения параметров движения отдельных ЛА принимается пока человеком-диспетчером, который может непосредственно взаимодействовать с вычислительным комплексом системы.
Навигация самолетов по трассе в значительной степени обеспечивается теми же РЛС, которые применяются в системах УВД. Они служат как для контроля выдерживания заданной трассы, так и для определения местоположения в процессе полета.
Для выполнения посадки и ее автоматизации наряду с радиомаячными системами широко используются РЛС посадки, обеспечивающие слежение за уклонением самолета от курса и глиссады планирования. Посадочные РЛС характеризуются дальностью действия в несколько десятков километров, но зато они имеют высокую точность.
Ряд современных аэропортов оборудован РЛС обзора летного поля, работающими в миллиметровом диапазоне и обладающими очень высокой разрешающей способностью, достаточной для распознавания при любой погоде самолетов, отдельных автомашин и т. д. Дальность их действия составляет несколько километров.
Большое значение приобретают метеорологические РЛС. Они применяются для обнаружения облаков и осадков и могут быть использованы для штормового оповещения. Кроме того, с их помощью измеряют метеорологические параметры.
В гражданской авиации используют ряд бортовых радиолокационных устройств. К ним относится бортовая РЛС для обнаружения опасных метеообразований и препятствий. Обычно она же используется для обзора земли с целью автономной навигации по характерным наземным радиолокационным ориентирам. Для обеспечения действия упомянутого выше активного канала на борту имеются специальные ответчики. Радиолокационные принципы используются и в таких навигационных приборах, как бортовой радиовысотомер и доплеровский (использующий эффект Доплера) измеритель путевой скорости и угла сноса (ДИСС). Большой интерес представляют РЛС бокового обзора, обеспечивающие значительное повышение разрешающей способности при обзоре земной поверхности по сравнению с обычными РЛС. Они нашли применение в последнее время для ледовой и геологической разведок.