
- •Общее представление об эконометрическом моделировании: предмет и методология исследования, основные задачи.
- •Парная линейная регрессионная модель: основные гипотезы.
- •Парная линейная регрессионная модель: оценка коэффициентов регрессии методом наименьших квадратов (мнк).
- •Парная линейная регрессионная модель: графическая интерпретация мнк.
- •Парная линейная регрессионная модель: доказать несмещенность мнк-оценок коэффициентов регрессии.
- •Парная линейная регрессионная модель: эффективность мнк-оценок коэффициентов регрессии.
- •Парная линейная регрессионная модель: остатки регрессии, необъясненная дисперсия и стандартная ошибка регрессии.
- •Парная линейная регрессионная модель: дисперсии, стандартные отклонения и ковариация мнк-оценок коэффициентов регрессии, и их оценки (на основе необъясненной дисперсии).
- •Понятие о распределениях «хи квадрат» и Стъюдента (с заданным числом степеней свободы), квантили распределения Стъюдента.
- •Парная линейная регрессионная модель: построение t-статистик для коэффициентов регрессии, проверка гипотез для коэффициентов регрессии.
- •Парная линейная регрессионная модель: полная, остаточная и объясненная суммы квадратов, коэффициент детерминации и его использование для оценки общего качества модели.
- •Парная линейная регрессионная модель: интервальные оценки коэффициентов регрессии. Линейная регрессионная модель.
- •Парная линейная регрессионная модель: точечный прогноз и его несмещенность.
- •61. (14.) Парная линейная регрессионная модель: интервальный прогноз для ожидаемого значения зависимой переменной.
- •62 (15). Парная линейная регрессионная модель: интервальный прогноз для зависимой переменной.
- •63 (16.). Множественная линейная регрессионная модель: спецификация модели с матричном виде, преобразование модели со свободным членом к модели без свободного члена.
- •64. Множественная регрессионная модель: осн гипотезы в матр виде.
- •65. Множеств лин регресс модель: оценка коэф-тов регрессии методом наим квадратов (мнк)
- •66 Множественная линейная регрессионная модель: доказать несмещенность мнк-оценок коэффициентов регрессии.
- •67 Множественная линейная регрессионная модель: эффективность мнк-оценок коэффициентов регрессии.
- •68 Множественная линейная регрессионная модель: ковариационная матрица мнк-оценок коэффициентов регрессии.
- •69 Множественная линейная регрессионная модель: остатки регрессии, необъясненная дисперсия и стандартная ошибка регрессии
- •70 Множественная линейная регрессионная модель: оценка ковариационной матрицы мнк-оценок коэффициентов регрессии (на основе необъясненной дисперсии).
- •72 Множественная линейная регрессионная модель: построение t-статистик для коэффициентов регрессии, проверка гипотез для коэффициентов регрессии.
- •Проверка линейного ограничения на параметры линейной регрессии
- •74 Множественная линейная регрессионная модель: полная, остаточная и объясненная суммы квадратов, коэффициент детерминации и его использование для оценки общего качества модели.
- •76. Множественная линейная регрессионная модель: построение f-статистики общего вида, проверка гипотез.
- •79. Множественная линейная регрессионная модель: доверительная область для коэффициентов регрессии
- •Множественная линейная регрессионная модель: точечный прогноз и его несмещенность.
- •81 (34) Множественная линейная регрессионная модель: интервальный прогноз для ожидаемого значения зависимой переменной.
- •82 (35 )Множественная линейная регрессионная модель: интервальный прогноз для зависимой переменной.
- •83 (36) Скорректированный коэффициент детерминации и его использование для выбора объясняющих переменных.
- •84 (37) Метод оптимального отбора объясняющих переменных.
- •85 (38) Нелинейные регрессионные модели: метод наименьших квадратов, методика выбора вида зависимости объясняемого фактора от объясняющих факторов.
- •86. (39)Показательная регресс. Модель:
- •8 7.(40) Полулогарифмические модели: экономич. Смысл коэффициентов регрессии, сведение к линейной модели.
- •88.(41) Модели, линейные относит-но коэфф-тов регрессии, и их сведение к линейным моделям.
- •89.(42)Обратная и степенная регрессион. Модели, и их сведение к линейным моделям.
- •90.(43) Качественные переменные: общее понятие о качеств. Переменных, экономич. Смысл коэфф-тов регрессии при таких переменных.
- •91.(44) Качествен. Переменные и их использование для исследования сезонных колебаний.
Парная линейная регрессионная модель: графическая интерпретация мнк.
М
НК
позволяет получить оценки параметров
а и b,
при кот. сумма квадратов отклонения
факт. значений результативного признака
(у) от расчетных (
)минимальна:
Т
о
есть из всего множества линий линия
регрессии на графике выбирается так,
чтобы сумма квадратов расстояний по
вертикали между точками и этой линией
была бы минимальной:
=
-
.
Следовательно,
→min
Чтобы найти минимум функции
надо
вычислить частные производные по каждому
из параметров а и b
и приравнять их к нулю. Обозначим
через S,
тогда:
Преобразую получим
Решив ее получим искомые оценки параметров a и b.
Готовые
формулы:
Парная линейная регрессионная модель: доказать несмещенность мнк-оценок коэффициентов регрессии.
Оценка коэффициента называется несмещенной оценкой данного коэффициента, если ее выборочное мат. ожидание равно оцениваемому параметру генеральной совокупности.
,
,(1)
– объясняющая
(независимая) переменная,
– объясняемая (зависимая) переменная,
– случайное отклонение,
и
– коэффициенты регрессии. Отметим, что
и
– случайные величины,
может быть как случайной, так и неслучайной
(детерминированной) величиной.
что в силу (1):
.(18)
В силу (11) и (18): (
,
(11),)
(19)
Из (18), (19):
(20)
В силу (13), (10):
.(13)
и
(10))
(21)
В силу (16), (21):
(
,(16))
(22)
Следовательно,
оценка
– несмещенная
В силу (17), (19), (22):
(
. (17))
. (23)
Следовательно,
оценка
– несмещенная.
Парная линейная регрессионная модель: эффективность мнк-оценок коэффициентов регрессии.
Свойство эффективности оценок неизвестных параметров модели регрессии, полученных методом наименьших квадратов, доказывается с помощью теоремы Гаусса-Маркова.
Сделаем следующие предположения о модели парной регрессии:
1) факторная переменная xi– неслучайная или детерминированная величина, которая не зависит от распределения случайной ошибки модели регрессии i;
2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:
3) дисперсия случайной ошибки модели регрессии постоянна для всех наблюдений:;
4) между значениями случайных ошибок модели регрессии в любых двух наблюдениях отсутствует систематическая взаимосвязь, т. е. случайные ошибки модели регрессии не коррелированны между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю):
Это условие выполняется в том случае, если исходные данные не являются временными рядами;
5) на основании третьего и четвёртого условий часто добавляется пятое условие, заключающееся в том, что случайная ошибка модели регрессии – это случайная величина, подчиняющейся нормальному закону распределения с нулевым математическим ожиданием и дисперсией
Если выдвинутые предположения справедливы, то оценки неизвестных параметров модели парной регрессии, полученные методом наименьших квадратов, имеют наименьшую дисперсию в классе всех линейных несмещённых оценок, т. е. МНК-оценки можно считать эффективными оценками неизвестных параметров.
Если выдвинутые предположения справедливы для модели множественной регрессии, то оценки неизвестных параметров данной модели регрессии, полученные методом наименьших квадратов, имеют наименьшую дисперсию в классе всех линейных несмещённых оценок, т. е. МНК-оценки можно считать эффективными оценками неизвестных параметров