- •Тема 9. Организация памяти вычислительных систем
- •1. Системы с общей и распределенной памятью
- •2. Многоуровневая организация общей памяти
- •3. Память с чередованием адресов
- •4. Симметричные (smp) многопроцессорные вс. Архитектура типа uma, coma, numa
- •5. Мультипроцессор Sun Enterprise 10000
- •Тема 10. Векторные и векторно-конвейерные вычислительные системы
- •1. Понятие вектора и размещение данных в памяти
- •2. Понятие векторного процессора
- •4. Структура векторного процессора
- •5. Структуры типа «память-память» и «регистр-регистр»
- •6. Обработка длинных векторов и матриц
- •Тема 11. Матричные вычислительные системы
- •1. Обобщенная модель матричной вс
- •2. Интерфейсная вм
- •3. Контроллер массива процессоров
- •4. Массив процессоров
- •5. Структура процессорного элемента
- •6. Подключение и отключение процессорных элементов
- •7. Сети взаимосвязей процессорных элементов
- •9. Ассоциативная память
- •10. Ассоциативные вс
- •11. Систолические структуры
- •Тема 12. Кластерные и mpp-системы
- •1. Понятие кластера. Преимущества и виды
- •2. Топологии кластеров
- •3. Примеры кластеров
- •4. Системы с массовым параллелизмом (mpp-системы)
- •Тема 13. Информационные технологии конечного пользователя
- •1. Общая классификация информационных технологий
- •2. Автоматизированное рабочее место – средство автоматизации работы конечного пользователя
- •3. Характеристика информационных технологий в экономике
- •3.1. Информационная технология поддержки принятия решений
- •3.2. Информационная технология экспертных систем
- •3.3. Информационные технологии управления
- •3.4. Автоматизация офиса
- •3.5. Аудио- и видеоконференции в автоматизации офиса
- •3.6. Технологии баз данных
- •Контрольные вопросы
2. Понятие векторного процессора
Векторный процессор — это процессор, в котором операндами некоторых команд могут выступать упорядоченные массивы данных — векторы. Векторный процессор может быть реализован в двух вариантах:
- дополнительный блок к универсальной ВС.
- основа самостоятельной ВС.
Рассмотрим возможные подходы к архитектуре средств векторной обработки. Наиболее распространенные из них сводятся к трем группам:
- конвейерное АЛУ;
- массив АЛУ;
- массив процессорных элементов.
Последний вариант - один из случаев многопроцессорной системы, известной как матричная ВС. Понятие векторного процессора имеет отношение к двум первым группам, причем, как правило, к первой.
В варианте с конвейерным АЛУ (слева) обработка элементов векторов производится конвейерным АЛУ для чисел с плавающей запятой (ПЗ). Операции с числами в форме с ПЗ достаточно сложны, но поддаются разбиению на отдельные шаги. Так, сложение двух чисел может быть сведено к четырем этапам:
- сравнению порядков,
- сдвигу мантиссы меньшего из чисел,
- сложению мантисс
- нормализации результата.
Каждый этап может быть реализован с помощью отдельной ступени конвейерного АЛУ. Очередной элемент вектора подается на вход конвейера, как только освобождается первая ступень. Ясно, что такой вариант вполне годится для обработки векторов.
Одновременные операции над элементами векторов можно проводить и с помощью нескольких параллельно используемых АЛУ, каждое из которых отвечает за одну пару элементов.
Если параллельно используются конвейерные АЛУ, то возможен еще один уровень конвейеризации. Вычислительные системы, где реализована эта идея, называют векторно-конвейерными. Коммерческие векторно-конвейерные ВС, в состав которых для обеспечения универсальности включен также скалярный процессор, известны как суперЭВМ.
3. PVP-система
Вычислительная система на векторно-конвейерных процессорах, в которых предусмотрены команды однотипной обработки векторов независимых данных, эффективно выполняющиеся на конвейерных функциональных устройствах. Обычно несколько таких процессоров работают одновременно над общей памятью (аналогично SMP) в рамках многопроцессорных конфигураций.
Несколько узлов могут быть объединены с помощью коммутатора (аналогично MPP). Поскольку передача данных в векторном формате осуществляется намного быстрее, чем в скалярном (максимальная скорость может составлять 64 Гбайт/с, что на 2 порядка быстрее, чем в скалярных машинах), то проблема взаимодействия между потоками данных при распараллеливании становится несущественной. И то, что плохо распараллеливается на скалярных машинах, хорошо распараллеливается на векторных. Таким образом, системы PVP-архитектуры могут являться машинами общего назначения (general purpose systems). Однако, поскольку векторные процессоры весьма дорого стоят, эти машины не могут быть общедоступными.
Наиболее популярны три машины PVP-архитектуры:
- CRAY X1, SMP-архитектура. Пиковая производительность системы в стандартной конфигурации может составлять десятки терафлопс.
- NEC SX-6, NUMA-архитектура. Пиковая производительность системы может достигать 8 Тфлопс, производительность одного процессора составляет 9,6 Гфлопс. Система масштабируется с единым образом операционной системы до 512 процессоров.
- Fujitsu-VPP5000 (vector parallel processing), MPP-архитектура. Производительность одного процессора составляет 9.6 Гфлопс, пиковая производительность системы может достигать 1249 Гфлопс, максимальная емкость памяти – 8 Тбайт.
