Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FRM_otvety.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
95.74 Кб
Скачать
  1. Value-at-Risk. Определение. Какие виды оценок var вы знаете? Опишите их.

Value at Risk (VaR) — стоимостная мера риска. Распространено общепринятое во всём мире обозначение «VaR». Это выраженная в денежных единицах оценка величины, которую не превысят ожидаемые в течение данного периода времени потери с заданной вероятностью.

VaR характеризуется тремя параметрами:

  • Временной горизонт, который зависит от рассматриваемой ситуации. По базельским документам — 10 дней, по методике Risk Metrics — 1 день. Чаще распространен расчет с временным горизонтом 1 день. 10 дней используется для расчета величины капитала, покрывающего возможные убытки.

  • Доверительный интервал (confidence level) — уровень допустимого риска. По базельским документам используется величина 99%, в системе RiskMetrics — 95%.

  • Базовая валюта, в которой измеряется показатель.

Метод Исторического Моделирования (историческая волатильность)

Этот подход состоит в следующем: программа расчета VaR фактически пересчитывает значение прибылей/убытков для существующего портфеля, каждый день возвращаясь к прошлым показателям, чтобы определить, сколько бы данный счет заработал или потерял за каждый день в последовательности. Затем программа упорядочивает эти наблюдения прибылей/убытков по возрастанию и устанавливает то значение VaR, которое соответствует убытку, связанному с доверительным интервалом, определяемым пользователем.

Расчет VaR по методу исторического моделирования является очень трудоемким с точки зрения объема необходимых вычислений, поскольку требует переоценки каждого отдельного инструмента за каждый отдельный день выбранного исторического отрезка времени.

Метод Статистического Моделирования (метод Монте-Карло).

Подход к расчету VaR по методу Монте-Карло похож на тот метод Монте-Карло, который применяется для вычисления модели ценообразования опционов. В соответствии с этим методом, программа генерирует большие объемы случайных чисел, имитирующих реально возможные результаты изменения цен отдельной ценной бумаги (на основе определяемого пользователем набора сценариев) и затем статистически классифицирует их в соответствии с их вероятностью. Затем программа присваивает VaR значение, привязанное к заданному доверительному интервалу. Например, программа расчета VaR по методу Монте-Карло для фиксации риска в 95-процентном доверительном интервале может переоценивать целые портфели до нескольких миллионов раз, чтобы определить весь диапазон возможных значений прибылей/убытков и затем установить такое значение VaR, чтобы значения 95% наблюдений были меньше этой цифры, а оставшиеся 5% – больше ее.

Преимущество моделирования по методу Монте-Карло состоит и том, что с помощью строгой экстраполяции рыночной истории по огромному числу результатов можно получить лучшую картину полного возможного распределения цен для данного портфеля, и, таким образом, иметь больший объем информации в отношении вероятностей возникновения широкого спектра возможных результатов. Кроме того, метод Монте-Карло может быть полезен для портфелей с большим количеством опционов: он предусматривает оценку практически неограниченного числа сочетаний цен и волатильностей лежащих в основе опционов базовых инструментов, а это является хорошей базой для определения стоимости опционов, содержащихся в данном портфеле, – в том числе и тех, что связаны с наиболее жесткими рыночными условиями, способными вызвать резкое колебание стоимости портфеля. Однако моделирование по методу Монте-Карло для большинства простых портфелей, наверное, будет чересчур мощным орудием любое увеличение точности становится в этих случаях просто несопоставимым с теми издержками, которые связаны с повышением уровня сложности и объемом необходимых для этого вычислений.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]