- •Пояснительная записка курсовой работы
- •Введение
- •2. Синтез непрерывного регулятора
- •3. Синтез компенсатора
- •4. Синтез дискретного регулятора
- •5. Синтез дискретного компенсатора
- •8. Расчет релейного регулятора
- •Заключение
- •Список использованных источников
- •Графический материал Приложение а
- •1Моделирование синтезированной системы непрерывного объекта управления
8. Расчет релейного регулятора
Реальные автоматические системы требуют при рассмотрении учитывать всякого рода нелинейности. Для элементов, содержащих нелинейности, не выполняется принцип суперпозиции. Это, в свою очередь, ограничивает возможность применения преобразования Лапласа и Фурье.
Нелинейная система – система, содержащая хотя бы одно нелинейное звено, т. е. описываемое нелинейным уравнением. Особые свойства нелинейных систем широко используются в технике. На этих свойствах основано генерирование электромагнитных колебаний, выпрямление переменного тока, умножение и деление частот. По динамическим качествам нелинейные автоматические системы во многих случаях превосходят линейные системы.
Простейшим видом нелинейных корректирующих звеньев являются корректирующие звенья с нелинейной статической характеристикой.
Если пользоваться частотным описанием таких нелинейных динамических корректирующих звеньев (на основе гармонической линеаризации), то их назначение можно определить следующим образом. Во-первых, они применяются для получения определенной желаемой зависимости частотных характеристик от амплитуды сигнала и тем самым для получения различной реакции системы на воздействие разной величины или, наоборот, для устранения нежелательных таких зависимостей, обусловленных имеющимися в системе нелинейностями основных звеньев. Во-вторых, такие корректирующие звенья применяются для преодоления той жесткой зависимости между амплитудной и фазовой частотными характеристиками, которая существует в линейных системах, с целью независимой корректировки каждой из этих характеристик.
Расчет системы с учётом нелинейного элемента:
Заменим в системе ПИД-регулятор на нелинейный элемент. В качестве нелинейного элемента возьмём идеальное реле, статическая характеристика звена изображена на рисунке ниже.
Puc.8.1 Идеальное реле
Чтобы реализовать данный регулятор в заданной системе автоматического управления, требуется рассчитать значения параметра с:
Wr=4*c/(pi*A)
Для определения коэффициента C нам требуется чтобы АФЧХ проходило через точки Re=0, Im=-1
Структура системы без регулятора:
Рис. 8.2 Структура системы без регулятора
При подаче на вход единичного ступенчатого сигнала получается следующий переходный процесс:
Рис. 8.3 Поведение системы без регулятора
Из графика видно, что процесс незатухающий, и естественно не удовлетворяет заданным параметрам.
С помощью релейного регулятора нужно добиться того, чтобы на выходе системы была единица, если на вход подается единичный ступенчатый сигнал.
Воспользуемся пакетом MatLab:
clc,clear % очистка рабочей области и переменных Wo=tf([1.05],[400 1 0],'ioDelay',10); % Заданная по условию передаточная функция A=0.03; % требуемая погрешность c=0.002; % время переключения Wr=4*c/(pi*A);% релейный регулятор w=0:0.0001:3; s=i*w; % переходим в частотную область Wob1=(Wr)*(1.05).*(exp(-10.*s)./(400*s.^2+s)); % передаточная функция с регулятором re=real(Wob1); % действительная часть АФЧХ im=imag(Wob1); % мнимая часть АФЧХ plot(re,im),grid on % афчх системы axis([-1.5 1.5 -1.5 1.5]),grid on
|
Получим следующий график:
Рис.8.3 АФЧХ системы
В нашей программе мы подобрали такое значение «с», при котором бы система находилась на границе устойчивости. Далее подставляем полученное значение в параметры настройки регулятора и моделируем работу системы в Simulinke:
Рис. 8.5 Структура системы с релейным регулятором
П
олучаем
следующий график:
Рис.8.6 Поведение системы с релейным регулятором
Из графика видно, что для данной системы время входа в допустимый предел равняется 4000 секунд, а значение перерегулирования меньше допустимого(в этом можно убедиться, если увеличить масштаб колебаний системы). В данной системе метод гармонических колебаний допустим, и нет необходимости корректировать значения регулятора.
Как
видно, с помощью релейного регулятора
можно добиться желаемого поведения
системы с учетом ошибки, лежащей в
заданном диапазоне:
.
