
- •0.1.Роль системных представлений в практической деятельности человека
- •0.2.Краткая историческая справка.
- •0.3.Анализ и синтез в познании
- •0.4.Построение общей теории систем
- •0.5.Основные проблемы информатики и информационных систем
- •0.6.Контрольные вопросы
- •1.Основы теории систем
- •1.1.Системы и их основные свойства.
- •1.1.1.Модель "черный ящик"
- •1.1.2.Сложности построения модели "черный ящик"
- •1.1.3.Множественность входов и выходов
- •1.1.4.Модель состава системы
- •1.1.5.Модель структуры системы
- •1.2.Классификация систем.
- •1.3.Особенности функционирования систем.
- •1.3.1.Пространство состояний системы.
- •1.3.2.Преобразования в системах.
- •1.3.3.Устойчивость систем.
- •1.3.4.Особенности управления сложных систем.
- •1.4.Критерии эффективности сложных систем.
- •1.5.Основы разработки и исследования сложных систем.
- •1.5.1.Основные этапы разработки сложных систем
- •1.5.2.Основные задачи исследования сложных систем.
- •1.6.Контрольные вопросы
- •2.Информационные системы
- •2.1.Автоматизированные информационные системы
- •2.1.1.Содержание и структура теории ис
- •2.1.2.Предметная область аис
- •2.1.3.Взаимодействие предметной области, пользователей и аис
- •2.1.4.Классификация, состав и структура аис
- •2.2.Интегрированные корпоративные ис
- •2.2.1.Основы построения икис
- •2.2.2.Базовая концепция икис «Галактика»
- •2.3.Основные виды обеспечения аис
- •2.3.1.Информационное обеспечение аис
- •2.3.2.Средства обработки данных
- •2.3.3.Интерфейсы пользователя
- •2.3.4.Классификация программного обеспечения аис
- •2.3.5.Операционные системы
- •2.3.6.Средства автоматизации проектирования аис
- •2.3.7.Программное обеспечение интерфейсов аис
- •2.3.8.Техническое обеспечение аис
- •2.3.9.Нормативно - техническое обеспечение качества, эффективности и безопасности аис
- •2.4.Контрольные вопросы
- •3.Информация в системах
- •3.1.Кодирование информации и алфавиты
- •3.2.Сигналы в системах
- •3.2.1.Понятие сигнала
- •3.2.2.Типы сигналов
- •3.3.Математическая модель сигналов
- •3.3.1.Непредсказуемость – основное свойство сигналов.
- •3.3.2.Классы случайных процессов
- •3.4.Математические модели реализаций случайных процессов
- •3.4.1.Моделирование конкретных реализаций
- •3.4.2.Некоторые модели ансамбля реализации.
- •3.5.О некоторых свойствах непрерывных сигналов
- •3.5.1.Частотно – временное представление сигналов
- •3.6.Цифровое представление непрерывных сигналов
- •3.6.1.Особенности цифрового представления непрерывных сигналов. Решетчатые функции.
- •3.6.2.Особенности прохождения непрерывного сигнала в цифровых системах.
- •3.7.Энтропия
- •3.7.1.Понятие неопределенности
- •3.7.2.Энтропия и ее свойства
- •3.7.3.Дифференциальная энтропия
- •3.7.4.Фундаментальное свойство энтропии случайного процесса.
- •3.8.Количество информации
- •3.8.1.Количество информации как мера снятой неопределенности
- •3.8.2.Количество информации как мера соответствия случайных объектов
- •3.8.3.Свойства количества информации
- •3.8.4.Единицы измерения энтропии и количества информации
- •3.9.Основные результаты теории информации
- •3.9.1.Избыточность
- •3.9.2.Скорость передачи и пропускная способность
- •3.9.3.Кодирование в отсутствии шумов
- •3.9.4.Кодирование при наличии шумов
- •3.10.Контрольные вопросы
- •4.Декомпозиция и агрегирование систем
- •4.1.Модели систем как основание декомпозиции
- •4.2.Алгоритмизация процесса декомпозиции
- •4.2.1.Компромиссы между полнотой и простотой
- •4.2.2.Типы сложности
- •4.3.Алгоритм декомпозиции
- •4.4.Агрегирование, эмерджентность и внутренняя целостность систем
- •4.4.1.Эмерджентность как проявление внутренней целостности систем
- •4.4.2.Эмерджентность как результат агрегирования
- •4.5.Виды агрегирования
- •4.5.1.Конфигуратор
- •4.5.2.Агрегаты-операторы
- •4.5.3.Классификация как агрегирование
- •4.5.4.Статистики как агрегаты
- •4.5.5.Агрегаты - структуры
- •4.6.Обобщенная модель агрегата
- •4.7.Некоторые особенности моделирования процесса функционирования агрегата.
- •4.8.Агрегативные системы.
- •4.9.Контрольные вопросы
- •5.Эксперимент в анализе систем
- •5.1.Измерительные шкалы
- •5.1.1.Шкалы наименования
- •5.1.2.Порядковые шкалы
- •5.1.3.Модифицированные порядковые шкалы
- •5.1.4.Шкалы интервалов
- •5.1.5.Шкалы отношений
- •5.1.6.Шкалы разностей
- •5.1.7.Абсолютная шкала
- •5.2.Расплывчатое описание ситуаций
- •5.3.Вероятностное описание ситуаций. Статистические измерения
- •5.3.1.Понятие случайной неопределенности
- •5.3.2.О природе случайности
- •5.3.3.Статистические измерения
- •5.3.4.Регистрация экспериментальных данных и ее связь с их последующей обработкой
- •5.4.Классификационные модели
- •5.5.Числовые модели
- •5.6.Особенности протоколов наблюдений
- •5.7.Контрольные вопросы
- •6.Приложение
- •6.1.Пример структуры аис.
- •6.1.1.Краткая характеристика аис
- •6.2.Иерархическая информационно-функциональная модель (взаимосвязанные диаграммы потоков данных) аис.
- •7.Библиографический список
5.3.3.Статистические измерения
При всем отличии этих точек зрения они не столь несовместимы, как это представляется на первый взгляд. Рассмотрим наглядную простейшую задачу обнаружения постоянного сигнала в нормальном шуме. Сигнал может принимать одно из двух (известных заранее) значений, 5 или 0, с вероятностями Р и Q соответственно (это и есть случайность незнания). В любом из этих случаев мы можем наблюдать только аддитивную смесь сигнала с гауссовым шумом, т .е. иметь выборку x1,..., xN либо из распределения Nx(0, 2), либо из распределения Nx(S, 2). Здесь шум представляет собой объективную и неустранимую случайность, подчиненную закономерности нормального распределения. Зная априори величины Р, Q, S, 0, функцию Nx (а, 2) при любых а и 2 , а также используя наблюдения x1..,, хN, мы можем уменьшить неопределенность того, какое же из возможных значений, S или 0, имеет место, т.е. уменьшить случайность незнания. Однако объективная случайность шума не позволяет сделать это безошибочно; даже при оптимальных методах обработки измерений х1..., xN вероятности ошибок отличны от нуля, хотя при неограниченном увеличении N они стремятся к нулю.
Как видим, в практических задачах объективные и субъективные случайности неразделимо переплетены. Такое слияние может быть еще более тесным: например, в непараметрической статистике распределения, характеризующие объективную случайность, считаются лишь существующими, но функционально неизвестными, т.е. субъективное незнание распространяется и на описание объективной случайности.
Итак, как и любые эксперименты, измерения случайных величин и процессов выполняются для уточнения их моделей, снятия или уменьшения неопределенности незнания. Обычно достаточно знать не все распределение, а лишь какой-то из его параметров, и тогда задача сводится к оценке этого параметра по наблюдаемой выборке. Хотя это уже "вторичная" обработка данных, измерение выборочных значений и вычисление оценки в совокупности можно трактовать как "измерение параметра". То же относится и к определению по выборке более сложных характеристик - самих распределений, регрессий, корреляций, спектров и т.д. Такое совместное рассмотрение непосредственных измерений и их обработки оказывается полезным еще и потому, что можно проводить общую оптимизацию этого процесса, и она далеко не всегда совпадает с оптимизацией компонент в отдельности.
Все эти соображения и дают основания ввести понятие статистических измерений, рассматривать эту проблематику как самостоятельный раздел метрологии со своей теорией и измерительной техникой.
В заключение подчеркнем еще раз, что статистический, вероятностный подход относится к неопределенности, описываемой распределениями вероятностей. На то, что методы статистики надо применять осторожно, что многие экспериментальные ситуации могут быть хотя и хаотическими, но не иметь вероятностного характера, обращали внимание многие исследователи.
Еще один важный момент состоит в том, чтобы по возможности ослабить или хотя бы учесть влияние измерений на наблюдаемый объект. Особенно это существенно при социальных исследованиях, наблюдениях за людьми: сам факт осознания, что они являются объектом внимания, заметно меняет их поведение. Воздействие измерительного устройства на измеряемый объект должно также учитываться при физических и химических экспериментах.