
- •0.1.Роль системных представлений в практической деятельности человека
- •0.2.Краткая историческая справка.
- •0.3.Анализ и синтез в познании
- •0.4.Построение общей теории систем
- •0.5.Основные проблемы информатики и информационных систем
- •0.6.Контрольные вопросы
- •1.Основы теории систем
- •1.1.Системы и их основные свойства.
- •1.1.1.Модель "черный ящик"
- •1.1.2.Сложности построения модели "черный ящик"
- •1.1.3.Множественность входов и выходов
- •1.1.4.Модель состава системы
- •1.1.5.Модель структуры системы
- •1.2.Классификация систем.
- •1.3.Особенности функционирования систем.
- •1.3.1.Пространство состояний системы.
- •1.3.2.Преобразования в системах.
- •1.3.3.Устойчивость систем.
- •1.3.4.Особенности управления сложных систем.
- •1.4.Критерии эффективности сложных систем.
- •1.5.Основы разработки и исследования сложных систем.
- •1.5.1.Основные этапы разработки сложных систем
- •1.5.2.Основные задачи исследования сложных систем.
- •1.6.Контрольные вопросы
- •2.Информационные системы
- •2.1.Автоматизированные информационные системы
- •2.1.1.Содержание и структура теории ис
- •2.1.2.Предметная область аис
- •2.1.3.Взаимодействие предметной области, пользователей и аис
- •2.1.4.Классификация, состав и структура аис
- •2.2.Интегрированные корпоративные ис
- •2.2.1.Основы построения икис
- •2.2.2.Базовая концепция икис «Галактика»
- •2.3.Основные виды обеспечения аис
- •2.3.1.Информационное обеспечение аис
- •2.3.2.Средства обработки данных
- •2.3.3.Интерфейсы пользователя
- •2.3.4.Классификация программного обеспечения аис
- •2.3.5.Операционные системы
- •2.3.6.Средства автоматизации проектирования аис
- •2.3.7.Программное обеспечение интерфейсов аис
- •2.3.8.Техническое обеспечение аис
- •2.3.9.Нормативно - техническое обеспечение качества, эффективности и безопасности аис
- •2.4.Контрольные вопросы
- •3.Информация в системах
- •3.1.Кодирование информации и алфавиты
- •3.2.Сигналы в системах
- •3.2.1.Понятие сигнала
- •3.2.2.Типы сигналов
- •3.3.Математическая модель сигналов
- •3.3.1.Непредсказуемость – основное свойство сигналов.
- •3.3.2.Классы случайных процессов
- •3.4.Математические модели реализаций случайных процессов
- •3.4.1.Моделирование конкретных реализаций
- •3.4.2.Некоторые модели ансамбля реализации.
- •3.5.О некоторых свойствах непрерывных сигналов
- •3.5.1.Частотно – временное представление сигналов
- •3.6.Цифровое представление непрерывных сигналов
- •3.6.1.Особенности цифрового представления непрерывных сигналов. Решетчатые функции.
- •3.6.2.Особенности прохождения непрерывного сигнала в цифровых системах.
- •3.7.Энтропия
- •3.7.1.Понятие неопределенности
- •3.7.2.Энтропия и ее свойства
- •3.7.3.Дифференциальная энтропия
- •3.7.4.Фундаментальное свойство энтропии случайного процесса.
- •3.8.Количество информации
- •3.8.1.Количество информации как мера снятой неопределенности
- •3.8.2.Количество информации как мера соответствия случайных объектов
- •3.8.3.Свойства количества информации
- •3.8.4.Единицы измерения энтропии и количества информации
- •3.9.Основные результаты теории информации
- •3.9.1.Избыточность
- •3.9.2.Скорость передачи и пропускная способность
- •3.9.3.Кодирование в отсутствии шумов
- •3.9.4.Кодирование при наличии шумов
- •3.10.Контрольные вопросы
- •4.Декомпозиция и агрегирование систем
- •4.1.Модели систем как основание декомпозиции
- •4.2.Алгоритмизация процесса декомпозиции
- •4.2.1.Компромиссы между полнотой и простотой
- •4.2.2.Типы сложности
- •4.3.Алгоритм декомпозиции
- •4.4.Агрегирование, эмерджентность и внутренняя целостность систем
- •4.4.1.Эмерджентность как проявление внутренней целостности систем
- •4.4.2.Эмерджентность как результат агрегирования
- •4.5.Виды агрегирования
- •4.5.1.Конфигуратор
- •4.5.2.Агрегаты-операторы
- •4.5.3.Классификация как агрегирование
- •4.5.4.Статистики как агрегаты
- •4.5.5.Агрегаты - структуры
- •4.6.Обобщенная модель агрегата
- •4.7.Некоторые особенности моделирования процесса функционирования агрегата.
- •4.8.Агрегативные системы.
- •4.9.Контрольные вопросы
- •5.Эксперимент в анализе систем
- •5.1.Измерительные шкалы
- •5.1.1.Шкалы наименования
- •5.1.2.Порядковые шкалы
- •5.1.3.Модифицированные порядковые шкалы
- •5.1.4.Шкалы интервалов
- •5.1.5.Шкалы отношений
- •5.1.6.Шкалы разностей
- •5.1.7.Абсолютная шкала
- •5.2.Расплывчатое описание ситуаций
- •5.3.Вероятностное описание ситуаций. Статистические измерения
- •5.3.1.Понятие случайной неопределенности
- •5.3.2.О природе случайности
- •5.3.3.Статистические измерения
- •5.3.4.Регистрация экспериментальных данных и ее связь с их последующей обработкой
- •5.4.Классификационные модели
- •5.5.Числовые модели
- •5.6.Особенности протоколов наблюдений
- •5.7.Контрольные вопросы
- •6.Приложение
- •6.1.Пример структуры аис.
- •6.1.1.Краткая характеристика аис
- •6.2.Иерархическая информационно-функциональная модель (взаимосвязанные диаграммы потоков данных) аис.
- •7.Библиографический список
5.2.Расплывчатое описание ситуаций
Обратим внимание на то, что все измерительные шкалы, рассмотренные выше, имеют одно общее свойство: они основаны на справедливости отношения эквивалентности (см. табл. 1). Это отношение имеет силу как отдельно на множестве состояний наблюдаемого объекта и множестве наблюдений, зафиксированных в любой из шкал (два состояния или два измерения либо тождественны, либо различны), так и на их совокупности (состояния и соответствующие им измерения находятся во взаимно однозначном соответствии). Использование рассогласованной (т.е. более слабой, чем можно) шкалы приводит к образованию на множестве состояний новых классов эквивалентности, внутри которых состояния неразличимы в данной шкале (хотя их и можно различить в более сильной шкале). Однако и в этом случае отношение эквивалентности соблюдается.
Встречаются (и гораздо чаще, чем кажется) случаи, когда тождество или различие двух состояний и/или наблюдений нельзя утверждать с полной уверенностью. Наибoлее явно это видно на примере шкал, в которых классы обозначаются конструкциями естественного языка. "В комнату вошел высокий молодой человек" - класс, к которому принадлежит человек, назван (т.е. измерение состоялось), но какого он роста и сколько ему лет? "В руках он держал довольно тяжелый сверток" - какого веса была его ноша? Если разобраться, то почти каждое наше слово обозначает некоторое не вполне определенное множество. ("Почти" - какой процент? "Наше" - чье именно? "Некоторое" - какое же? "Не вполне" - насколько? "Определенное" - кем и как" и т.д.) Это свойство естественного языка, природное и неотъемлемое, безусловно, полезное (иначе бы оно не закрепилось в процессе развития языка), но приводящее к затруднениям, когда сопровождающая его неопределенность мешает. Древние логики дискутировали вопрос о том, сколько песчинок должно быть собрано вместе, чтобы получилась куча песка; сегодня мы просто говорим, что слово "куча" - это лишь метка нечетко определенного множества. Спор о том, сколько песчинок в "куче", эквивалентен спору о том, в каком возрасте человек становится "старым" или сколько волосинок должно у него выпасть, чтобы он был "лысым".
Эта неопределенность смысла языковых конструкций является одной из основных трудностей автоматизации анализа и синтеза речи, автоматического (и не только автоматического) перевода с одного языка на другой. Например, одному английскому предложению, состоящему из пяти слов, можно дать пять разных (!) смысловых интерпретаций:
TIME FLIES LIKE AN ARROW
ВРЕМЯ ЛЕТИТ СТРЕЛОЙ
ВРЕМЯ ЛЕТИТ В НАПРАВЛЕНИИ СТРЕЛЫ
МУХАМ ВРЕМЕНИ НРАВИТСЯ СТРЕЛА
ИЗМЕРЯЙ СКОРОСТЬ МУХ ТАК ЖЕ, КАК СКОРОСТЬ СТРЕЛЫ
ИЗМЕРЯЙ СКОРОСТЬ МУХ, ПОХОЖИХ НА СТРЕЛУ
Все сказанное выше мотивирует введение понятия лингвистической переменной как переменной, значение которой расплывчато по своей природе, как метки размытого, расплывчатого множества. Хотя теория размытых множеств прекрасно иллюстрируется языковыми примерами и имеет интересные приложения в области искусственного интеллекта, размытость оказывается свойством не только естественного языка. Например, в математике с успехом применяются понятия "значительно больше" (символ ») и "приблизительно равно" (символ или = ), являющиеся типично расплывчатыми.
Расплывчатость - это такое свойство явлений, при котором не выполняется отношение эквивалентности: явление одновременно может принадлежать данному классу и не принадлежать ему. Неопределенность такого типа описывается с помощью функции принадлежности; значений этой функции выражает степень уверенности, с которой мы относим данный объект к указанному классу. Сам класс в итоге становится не определяемым однозначно и называется расплывчатым множеством.