
- •0.1.Роль системных представлений в практической деятельности человека
- •0.2.Краткая историческая справка.
- •0.3.Анализ и синтез в познании
- •0.4.Построение общей теории систем
- •0.5.Основные проблемы информатики и информационных систем
- •0.6.Контрольные вопросы
- •1.Основы теории систем
- •1.1.Системы и их основные свойства.
- •1.1.1.Модель "черный ящик"
- •1.1.2.Сложности построения модели "черный ящик"
- •1.1.3.Множественность входов и выходов
- •1.1.4.Модель состава системы
- •1.1.5.Модель структуры системы
- •1.2.Классификация систем.
- •1.3.Особенности функционирования систем.
- •1.3.1.Пространство состояний системы.
- •1.3.2.Преобразования в системах.
- •1.3.3.Устойчивость систем.
- •1.3.4.Особенности управления сложных систем.
- •1.4.Критерии эффективности сложных систем.
- •1.5.Основы разработки и исследования сложных систем.
- •1.5.1.Основные этапы разработки сложных систем
- •1.5.2.Основные задачи исследования сложных систем.
- •1.6.Контрольные вопросы
- •2.Информационные системы
- •2.1.Автоматизированные информационные системы
- •2.1.1.Содержание и структура теории ис
- •2.1.2.Предметная область аис
- •2.1.3.Взаимодействие предметной области, пользователей и аис
- •2.1.4.Классификация, состав и структура аис
- •2.2.Интегрированные корпоративные ис
- •2.2.1.Основы построения икис
- •2.2.2.Базовая концепция икис «Галактика»
- •2.3.Основные виды обеспечения аис
- •2.3.1.Информационное обеспечение аис
- •2.3.2.Средства обработки данных
- •2.3.3.Интерфейсы пользователя
- •2.3.4.Классификация программного обеспечения аис
- •2.3.5.Операционные системы
- •2.3.6.Средства автоматизации проектирования аис
- •2.3.7.Программное обеспечение интерфейсов аис
- •2.3.8.Техническое обеспечение аис
- •2.3.9.Нормативно - техническое обеспечение качества, эффективности и безопасности аис
- •2.4.Контрольные вопросы
- •3.Информация в системах
- •3.1.Кодирование информации и алфавиты
- •3.2.Сигналы в системах
- •3.2.1.Понятие сигнала
- •3.2.2.Типы сигналов
- •3.3.Математическая модель сигналов
- •3.3.1.Непредсказуемость – основное свойство сигналов.
- •3.3.2.Классы случайных процессов
- •3.4.Математические модели реализаций случайных процессов
- •3.4.1.Моделирование конкретных реализаций
- •3.4.2.Некоторые модели ансамбля реализации.
- •3.5.О некоторых свойствах непрерывных сигналов
- •3.5.1.Частотно – временное представление сигналов
- •3.6.Цифровое представление непрерывных сигналов
- •3.6.1.Особенности цифрового представления непрерывных сигналов. Решетчатые функции.
- •3.6.2.Особенности прохождения непрерывного сигнала в цифровых системах.
- •3.7.Энтропия
- •3.7.1.Понятие неопределенности
- •3.7.2.Энтропия и ее свойства
- •3.7.3.Дифференциальная энтропия
- •3.7.4.Фундаментальное свойство энтропии случайного процесса.
- •3.8.Количество информации
- •3.8.1.Количество информации как мера снятой неопределенности
- •3.8.2.Количество информации как мера соответствия случайных объектов
- •3.8.3.Свойства количества информации
- •3.8.4.Единицы измерения энтропии и количества информации
- •3.9.Основные результаты теории информации
- •3.9.1.Избыточность
- •3.9.2.Скорость передачи и пропускная способность
- •3.9.3.Кодирование в отсутствии шумов
- •3.9.4.Кодирование при наличии шумов
- •3.10.Контрольные вопросы
- •4.Декомпозиция и агрегирование систем
- •4.1.Модели систем как основание декомпозиции
- •4.2.Алгоритмизация процесса декомпозиции
- •4.2.1.Компромиссы между полнотой и простотой
- •4.2.2.Типы сложности
- •4.3.Алгоритм декомпозиции
- •4.4.Агрегирование, эмерджентность и внутренняя целостность систем
- •4.4.1.Эмерджентность как проявление внутренней целостности систем
- •4.4.2.Эмерджентность как результат агрегирования
- •4.5.Виды агрегирования
- •4.5.1.Конфигуратор
- •4.5.2.Агрегаты-операторы
- •4.5.3.Классификация как агрегирование
- •4.5.4.Статистики как агрегаты
- •4.5.5.Агрегаты - структуры
- •4.6.Обобщенная модель агрегата
- •4.7.Некоторые особенности моделирования процесса функционирования агрегата.
- •4.8.Агрегативные системы.
- •4.9.Контрольные вопросы
- •5.Эксперимент в анализе систем
- •5.1.Измерительные шкалы
- •5.1.1.Шкалы наименования
- •5.1.2.Порядковые шкалы
- •5.1.3.Модифицированные порядковые шкалы
- •5.1.4.Шкалы интервалов
- •5.1.5.Шкалы отношений
- •5.1.6.Шкалы разностей
- •5.1.7.Абсолютная шкала
- •5.2.Расплывчатое описание ситуаций
- •5.3.Вероятностное описание ситуаций. Статистические измерения
- •5.3.1.Понятие случайной неопределенности
- •5.3.2.О природе случайности
- •5.3.3.Статистические измерения
- •5.3.4.Регистрация экспериментальных данных и ее связь с их последующей обработкой
- •5.4.Классификационные модели
- •5.5.Числовые модели
- •5.6.Особенности протоколов наблюдений
- •5.7.Контрольные вопросы
- •6.Приложение
- •6.1.Пример структуры аис.
- •6.1.1.Краткая характеристика аис
- •6.2.Иерархическая информационно-функциональная модель (взаимосвязанные диаграммы потоков данных) аис.
- •7.Библиографический список
4.5.4.Статистики как агрегаты
Важный пример агрегирования данных дает статистический анализ. Среди различных агрегатов (называемых в этом случае статистиками, т.е. функциями выборочных значений) особое место занимают достаточные статистики, т.е. такие агрегаты, которые извлекают всю полезную информацию об интересующем нас параметре из совокупности наблюдений. Однако при агрегировании обычно потери информации неизбежны, и достаточные статистики сводят эти потери к минимуму. В таких условиях становятся важными оптимальные статистики, т.е. позволяющие свести неизбежные в этих условиях потери к минимуму в некотором заданном смысле. Наглядный пример статистического агрегирования представляет собой факторный анализ, в котором несколько переменных сводятся в один фактор.
Наконец, подчеркнем, что с созданием агрегата-оператора связан не только выигрыш, ради которого он и создается, но и риск попасть в "ловушки". Отметим основные из них:
потеря полезной информации. Агрегирование является необратимым преобразованием (например, по сумме нельзя восстановить слагаемые), что в общем случае и приводит к потерям; достаточные статистики - лишь счастливое исключение (если сумма есть достаточная статистика, то информация об отдельных слагаемых и не нужна);
агрегирование представляет собой выбор определенной модели системы, причем с этим выбором связаны непростые проблемы адекватности;
некоторым агрегатам-операторам присуща внутренняя противоречивость, сопряженная с отрицательными (по отношению к целям агрегирования) последствиями. Наиболее ярким примером этого является теорема о невозможности, но не присуще ли это свойство (хотя и выраженное в разной степени) всем агрегатам?
4.5.5.Агрегаты - структуры
Важной (а на этапе синтеза - важнейшей) формой агрегирования является образование структур. Как любой вид агрегата, структура является моделью системы и, следовательно, определяется тройственной совокупностью: объекта, цели и средств (в том числе среды) моделирования. Это и объясняет многообразие типов структур (сети, матрицы, деревья и т.д.), возникающих при выявлении, описании структур (познавательные модели).
При синтезе мы создаем, определяем, навязываем структуру будущей, проектируемой системе. Если это не абстрактная, а реальная система, то в ней вполне реально (т.е. независимо от нашего желания) возникнут, установятся и начнут "работать" не только те связи, которые мы спроектировали, но и множество других, не предусмотренных нами, вытекающих из самой природы сведенных в одну систему элементов. Поэтому при проектировании системы важно задать ее структуры во всех существенных отношениях, так как в остальных отношениях структуры сложатся сами, стихийным образом (конечно, не совсем независимо от установленных и поддерживаемых проектных структур). Совокупность всех существенных отношений определяется конфигуратором системы, и отсюда вытекает, что проект любой системы должен содержать разработку стольких структур, сколько языков включено в ее конфигуратор. Например, проект организационной системы должен содержать структуры распределения власти, распределения ответственности и распределения информации. Подчеркнем, что, хотя эти структуры могут весьма сильно отличаться топологически (например, структура подчиненности иерархична, а функционирование организовано по матричной структуре), они лишь с разных сторон описывают одну и ту же систему и, следовательно, не могут быть не связанными между собой.
В современных системных науках все большее внимание уделяется одному из специфических видов структур — так называемым семантическим сетям.