
- •0.1.Роль системных представлений в практической деятельности человека
- •0.2.Краткая историческая справка.
- •0.3.Анализ и синтез в познании
- •0.4.Построение общей теории систем
- •0.5.Основные проблемы информатики и информационных систем
- •0.6.Контрольные вопросы
- •1.Основы теории систем
- •1.1.Системы и их основные свойства.
- •1.1.1.Модель "черный ящик"
- •1.1.2.Сложности построения модели "черный ящик"
- •1.1.3.Множественность входов и выходов
- •1.1.4.Модель состава системы
- •1.1.5.Модель структуры системы
- •1.2.Классификация систем.
- •1.3.Особенности функционирования систем.
- •1.3.1.Пространство состояний системы.
- •1.3.2.Преобразования в системах.
- •1.3.3.Устойчивость систем.
- •1.3.4.Особенности управления сложных систем.
- •1.4.Критерии эффективности сложных систем.
- •1.5.Основы разработки и исследования сложных систем.
- •1.5.1.Основные этапы разработки сложных систем
- •1.5.2.Основные задачи исследования сложных систем.
- •1.6.Контрольные вопросы
- •2.Информационные системы
- •2.1.Автоматизированные информационные системы
- •2.1.1.Содержание и структура теории ис
- •2.1.2.Предметная область аис
- •2.1.3.Взаимодействие предметной области, пользователей и аис
- •2.1.4.Классификация, состав и структура аис
- •2.2.Интегрированные корпоративные ис
- •2.2.1.Основы построения икис
- •2.2.2.Базовая концепция икис «Галактика»
- •2.3.Основные виды обеспечения аис
- •2.3.1.Информационное обеспечение аис
- •2.3.2.Средства обработки данных
- •2.3.3.Интерфейсы пользователя
- •2.3.4.Классификация программного обеспечения аис
- •2.3.5.Операционные системы
- •2.3.6.Средства автоматизации проектирования аис
- •2.3.7.Программное обеспечение интерфейсов аис
- •2.3.8.Техническое обеспечение аис
- •2.3.9.Нормативно - техническое обеспечение качества, эффективности и безопасности аис
- •2.4.Контрольные вопросы
- •3.Информация в системах
- •3.1.Кодирование информации и алфавиты
- •3.2.Сигналы в системах
- •3.2.1.Понятие сигнала
- •3.2.2.Типы сигналов
- •3.3.Математическая модель сигналов
- •3.3.1.Непредсказуемость – основное свойство сигналов.
- •3.3.2.Классы случайных процессов
- •3.4.Математические модели реализаций случайных процессов
- •3.4.1.Моделирование конкретных реализаций
- •3.4.2.Некоторые модели ансамбля реализации.
- •3.5.О некоторых свойствах непрерывных сигналов
- •3.5.1.Частотно – временное представление сигналов
- •3.6.Цифровое представление непрерывных сигналов
- •3.6.1.Особенности цифрового представления непрерывных сигналов. Решетчатые функции.
- •3.6.2.Особенности прохождения непрерывного сигнала в цифровых системах.
- •3.7.Энтропия
- •3.7.1.Понятие неопределенности
- •3.7.2.Энтропия и ее свойства
- •3.7.3.Дифференциальная энтропия
- •3.7.4.Фундаментальное свойство энтропии случайного процесса.
- •3.8.Количество информации
- •3.8.1.Количество информации как мера снятой неопределенности
- •3.8.2.Количество информации как мера соответствия случайных объектов
- •3.8.3.Свойства количества информации
- •3.8.4.Единицы измерения энтропии и количества информации
- •3.9.Основные результаты теории информации
- •3.9.1.Избыточность
- •3.9.2.Скорость передачи и пропускная способность
- •3.9.3.Кодирование в отсутствии шумов
- •3.9.4.Кодирование при наличии шумов
- •3.10.Контрольные вопросы
- •4.Декомпозиция и агрегирование систем
- •4.1.Модели систем как основание декомпозиции
- •4.2.Алгоритмизация процесса декомпозиции
- •4.2.1.Компромиссы между полнотой и простотой
- •4.2.2.Типы сложности
- •4.3.Алгоритм декомпозиции
- •4.4.Агрегирование, эмерджентность и внутренняя целостность систем
- •4.4.1.Эмерджентность как проявление внутренней целостности систем
- •4.4.2.Эмерджентность как результат агрегирования
- •4.5.Виды агрегирования
- •4.5.1.Конфигуратор
- •4.5.2.Агрегаты-операторы
- •4.5.3.Классификация как агрегирование
- •4.5.4.Статистики как агрегаты
- •4.5.5.Агрегаты - структуры
- •4.6.Обобщенная модель агрегата
- •4.7.Некоторые особенности моделирования процесса функционирования агрегата.
- •4.8.Агрегативные системы.
- •4.9.Контрольные вопросы
- •5.Эксперимент в анализе систем
- •5.1.Измерительные шкалы
- •5.1.1.Шкалы наименования
- •5.1.2.Порядковые шкалы
- •5.1.3.Модифицированные порядковые шкалы
- •5.1.4.Шкалы интервалов
- •5.1.5.Шкалы отношений
- •5.1.6.Шкалы разностей
- •5.1.7.Абсолютная шкала
- •5.2.Расплывчатое описание ситуаций
- •5.3.Вероятностное описание ситуаций. Статистические измерения
- •5.3.1.Понятие случайной неопределенности
- •5.3.2.О природе случайности
- •5.3.3.Статистические измерения
- •5.3.4.Регистрация экспериментальных данных и ее связь с их последующей обработкой
- •5.4.Классификационные модели
- •5.5.Числовые модели
- •5.6.Особенности протоколов наблюдений
- •5.7.Контрольные вопросы
- •6.Приложение
- •6.1.Пример структуры аис.
- •6.1.1.Краткая характеристика аис
- •6.2.Иерархическая информационно-функциональная модель (взаимосвязанные диаграммы потоков данных) аис.
- •7.Библиографический список
3.2.Сигналы в системах
Для того чтобы два объекта содержали информацию друг о друге, необходимо, чтобы между их состояниями существовало соответствие, только при этом условии по состоянию одного объекта можно судить о состоянии другого. Такое соответствие может установиться только в результате физического взаимодействия между этими объектами. Соответствие между состояниями двух объектов может устанавливаться и с помощью взаимодействия с промежуточными объектами, часто даже целой совокупностью промежуточных объектов.
3.2.1.Понятие сигнала
Сигнал есть материальный носитель информации, средство перенесения информации в пространстве и времени.
Утверждая, что объекты выступают в качестве сигналов, следует сделать уточнение. Один и тот же объект может выступать в качестве разных сигналов: колебания воздуха могут нести звуки музыки, речь лектора, пение птиц или шум самолета; с магнитной ленты можно стереть одну запись и сделать другую и т.д. Следовательно, в качестве сигналов используются не сами по себе объекты, а их состояния.
Не всякое состояние имеет сигнальные свойства. Точнее говоря, данный объект взаимодействует не только с тем объектом, информацию о котором мы хотели бы получить, но и с другими, не интересующими нас объектами. В результате соответствие состояний ослабевает, разрушается. Условия, обеспечивающие установление и способствующие сохранению сигнального соответствия состояний, называются кодом. В искусственных системах кодом называют комплекс правил образования сигнала. При более подробном рассмотрении этого процесса в технических системах кодом называют условные, варьируемые правила, а диктуемые техникой условия называют модуляцией. Будем пока использовать самое общее употребление слова "код". Посторонние воздействия, нарушающие это соответствие, называются помехами или шумами. Нарушение соответствия может происходить не только вследствие помех, но и из-за рассогласования кодов взаимодействующих объектов. В искусственных системах, где такое согласование организуется специально, это явно видно на примере криптографии, основанной на засекречивании кодов. В природных системах согласование кодов происходит в самой структуре систем через естественный отбор различных вариантов.
Информация есть свойство материи, состоящее в том, что в результате взаимодействия объектов между их состояниями устанавливается определенное соответствие. Чем сильнее выражено это соответствие, тем полнее состояние одного объекта отражает состояние другого, тем больше информации один объект содержит о другом.
Таким образом, сигнал есть материальный носитель информации. В качестве сигналов используются состояния физических объектов или полей. Соответствие между сигналом и несомой им информацией устанавливается по специальным правилам, называемым кодом.
3.2.2.Типы сигналов
Поскольку сигналы служат для переноса информации в пространстве и времени, для образования сигналов могут использоваться только объекты, состояния которых достаточно устойчивы по отношению к течению времени или к изменению положения в пространстве. С этой точки зрения сигналы делятся на два типа:
1. сигналы, являющиеся стабильными состояниями физических объектов (например, книга, фотография, магнитофонная запись, состояние памяти ЭВМ, положение триангуляционной вышки и т д.). Такие сигналы называются статическими.
2. сигналы, в качестве которых используются динамические состояния силовых полей. Такие поля характеризуются тем, что изменение их состояния не может быть локализовано в (неизолированной) части поля и приводит к распространению возмущения. Конфигурация этого возмущения во время распространения обладает определенной устойчивостью, что обеспечивает сохранение сигнальных свойств. Примерами таких сигналов могут служить звуки (изменение состояния поля сил упругости в газе, жидкости или твердом теле), световые и радиосигналы (изменения состояния электромагнитного поля). Сигналы указанного типа называются динамическими.
Динамические сигналы используются для передачи, а статические — для хранения информации, но можно найти и противоположные примеры (динамические запоминающие устройства, письма, газеты).
Сигналы играют в системах особую, очень важную роль. Если энергетические и вещественные потоки, образно говоря, питают систему, то потоки информации, переносимые сигналами, организуют все ее функционирование, управляют ею. Н. Винер, например, подчеркивал, что общество простирается до тех пределов, до каких распространяется информация. Пожалуй, это следует отнести к любой системе.
Таким образом, главное отличие подхода к изучению любого объекта как системы, а не как просто объекта, состоит в том, что мы ограничиваемся не только рассмотрением и описанием вещественной и энергетической его сторон, но прежде всего проводим исследование его информационных аспектов: целей, сигналов, информационных потоков, управления, организации и т. п.