Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фейнман А.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.22 Mб
Скачать

МАГНИТНОЕ ПОЛЕ В РАЗНЫХ СЛУЧАЯХ

§ 1. Векторный потенциал

В этой главе мы продолжим разговор о магнитостатике, т. е. о постоянных магнитных полях и постоянных токах. Магнитное поле и электрические токи связаны нашими основными уравнениями:

На этот раз нам нужно решить эти уравне­ния математически самым общим образом, а не ссылаться на какую-нибудь особую симметрию или на интуицию. В электростатике мы нашли прямой способ вычисления поля, когда из­вестны положения всех электрических зарядов:

скалярный потенциал  дается просто инте­гралом по зарядам, как в уравнении (4.25) на стр. 77. Если затем нужно знать электри­ческое поле, то его получают дифференпированием . Мы покажем сейчас, что для нахожде­ния поля В существует аналогичная процедура, если известна плотность тока j всех движу­щихся зарядов.

В электростатике, как мы видели (из-за того, что rot от Е везде равен нулю), всегда можно представить Е в виде градиента от ска­лярного поля . А вот rot от В не везде равен нулю, поэтому представить его в виде градиента, вообще говоря, невозможно. Однако диверген­ция В везде равна нулю, а это значит, что мы можем представить В в виде ротора от другого векторного поля. Ибо, как мы видели в гл. 2, § 8, дивергенция ротора всегда равна нулю. Следовательно, мы всегда можем выразить В через поле, которое мы обозначим А:

Или, расписывая компоненты:

Запись В=[A] гарантирует выполнение (14.1), потому что обязательно

Поле А называется векторным потенциалом.

Вспомним, что скалярный потенциал  оказывается не полностью определенным. Если мы нашли для некоторой зада­чи потенциал  , то всегда можно найти столь же хороший другой потенциал , добавив постоянную:

Новый потенциал ' дает те же электрические поля, потому, что градиент С есть нуль; ' и  отвечают одной и той же картине.

Точно так же у нас может быть несколько векторных по­тенциалов А, приводящих к одним и тем же магнитным полям. Опять-таки, поскольку В получается из А дифференцированием, то прибавление к А константы не меняет физики дела. Но для А свобода больше. Мы можем добавить к А любое поле, которое есть градиент от некоторого скалярного поля, не меняя при этом физики. Это можно показать следующим образом. Пусть у нас есть А, которое в какой-то реальной задаче дает правиль­ное поле В. Спрашивается, при каких условиях другой век­торный потенциал А', будучи подставлен в (14.3), дает то же самое поле B. Значит A и Aимеют одинаковый ротор.

Поэтому

Но если ротор вектора есть нуль, то вектор должен быть гра­диентом некоторого скалярного поля, скажем , так что А'—А=. Это означает, что если А есть векторный потенниал, отвечающий данной задаче, то при любом 

также будет векторным потенциалом, в одинаковой степени удовлетворяющим данной задаче и приводящим к тому же полю B.

Обычно бывает удобно уменьшить «свободу» А, накладывая на него произвольно некоторое другое условие (почти таким же образом мы считали удобным — довольно часто — выбирать потенциал  равным нулю на больших расстояниях). Мы можем, например, ограничить А, наложив на него такое условие, чтобы дивергенция А чему-нибудь равнялась. Мы всегда можем это сделать, не задевая В. Так получается потому, что, хотя А' и А имеют одинаковый ротор и дают одно и то же В, они вовсе не обязаны иметь одинаковую дивергенцию. В самом деле, A'= A+2, и, подбирая соответствующее , можно придать A' любое значение.

Чему следует приравнять А? Выбор должен обеспечить наибольшее математическое удобство и зависит от нашей задачи. Для магнитостатики мы сделаем простой выбор

(Потом, когда мы перейдем к электродинамике, мы изменим наш выбор.) Итак, наше полное определение *. А в данный момент есть [А]=В и А = 0.

Чтобы привыкнуть к векторному потенциалу, посмотрим сначала, чему он равен для однородного магнитного поля В0. Выбивая ось z в направлении B0, мы должны иметь

Рассматривая эти уравнения, мы видим, что одно из возможных решений есть

Или с тем же успехом можно взять

Еще одно решение есть комбинация первых двух

Ясно, что для каждого поля В векторный потенциал А не единственный: существует много возможностей.

* Наше определение все еще не полностью задает А. Чтобы задание было единственным, мы должны были бы что-нибудь сказать о поведении поля А на какой-либо границе или на больших расстояниях. Иногда бывает удобно выбрать, например, поле, спадающее к нулю на больших расстоя­ниях.

Фиг. 14.1. Однородное магнитное поле B , направленное по оси z, соответствует векторному потенциалу A, который вращается вокруг оси z.

r’ - расстояние до оси z.

Третье решение [уравнение (14.8)] обладает рядом интерес­ных свойств. Поскольку x-компонента пропорциональна -у, а у-компонента пропорциональна +x, то вектор А должен быть перпендикулярен вектору, проведенному от оси z, кото­рый мы обозначим r' (штрих означает, что это не вектор рас­стояния от начала). Кроме того, величина А пропорциональна x2+y2 и, следовательно, пропорциональна r'. Поэтому А (для неоднородного поля) может быть записано просто

Векторный потенциал А равен по величине Вr'/2 и вращается вокруг оси z, как показано на фиг. 14.1. Если, например, поле В есть поле внутри соленоида вдоль его оси, то векторный по­тенциал циркулирует точно таким же образом, как и токи в соленоиде.

Векторный потенциал однородного поля может быть полу­чен и другим способом. Циркуляция А вдоль любой замкнутой петли Г может быть выражена через поверхностный интеграл от [A] с помощью теоремы Стокса

Но интеграл справа равен потоку В сквозь петлю, поэтому

Итак, циркуляция А вдоль всякой петли равна потоку В сквозь петлю. Если мы возьмем круглую петлю радиуса r' в плоско­сти, перпендикулярной однородному полю В, то поток будет

Если выбрать начало отсчета в центре петли, так что А можно считать направленным по касательной и функцией только от r', то циркуляция будет равна

Как и раньше, получаем

В только что разобранном примере мы вычисляем векторный потенциал из магнитного поля, обычно поступают наоборот. В сложных задачах всегда проще найти векторный потенциал, а затем уже из него найти магнитное поле. Сейчас мы покажем, как это можно сделать.