
- •Г. М. Давидан, а. Г. Нелин, л. Н. Олейник, е. Д. Скутин общая химическая технология
- •Предисловие
- •Глава 1 общие понятия о химическом производстве
- •1.1. Химическая технология как наука
- •М акрокинетика
- •1.2. Связь химической технологии с другими науками
- •Химическая технология
- •1.3. История отечественной химической технологии
- •Контрольные вопросы
- •Глава 2 компоненты химического производства
- •2.1. Сырье в химическом производстве
- •Классификация химического сырья
- •2.2. Энергия в химической технологии
- •2.4. Воздух в химической технологии
- •Контрольные вопросы
- •Глава 3 критерии оценки эффективности химического производства
- •3.1. Технико-экономические показатели (тэп)
- •3.2. Структура экономики химического производства
- •Материальный и энергетический баланс химического производства
- •Контрольные вопросы
- •Глава 4 системный подход в изучении химико-технологического процесса
- •4.1. Общие понятия и определения
- •4.2. Химико-технологическая система как объект моделирования
- •4.3. Операторы
- •4.4. Матричное представление моделей
- •4.5. Подсистемы хтс
- •4.6. Связи
- •4.7. Классификация технологических схем
- •4.8. Системный подход к разработке технологии производства
- •4.9. Оптимизация производства
- •Контрольные вопросы
- •Глава 5 общие закономерности химических процессов
- •5.1. Понятие о химическом процессе
- •5.2. Классификация химических реакций
- •5.3. Интенсификация гомогенных процессов
- •5.4. Интенсификация гетерогенных процессов
- •5.5. Интенсификация процессов, основанных на необратимых реакциях
- •5.6. Интенсификация процессов, основанных на обратимых реакциях
- •Контрольные вопросы
- •Глава 6 гетерогенный катализ
- •6.1. Общие положения катализа
- •6.2. Процессы адсорбции и хемосорбции в гетерогенном катализе
- •6.3. Механизм гетерогенных каталитических процессов
- •6.4. Основные требования к гетерогенным катализаторам
- •6.5. Основные структурные параметры гетерогенных катализаторов
- •6.6. Технологические свойства гетерогенных катализаторов
- •6.7. Классификация гетерогенных катализаторов
- •6.8. Состав катализаторов
- •6.9. Приготовление катализаторов
- •Контрольные вопросы
- •Глава 7 гомогенный катализ
- •7.1. Кислотный (основной) катализ
- •7.2. Металлокомплексный катализ
- •7.3. Ферментативный катализ
- •Контрольные вопросы
- •Глава 8 химические реакторы
- •8.1. Принципы классификации химических реакторов
- •8.2. Принципы проектирования химических реакторов
- •8.3. Химические реакторы с идеальной структурой потока в изотермическом режиме
- •8.3.3. Примеры аналитического решения математической модели (8.22) и (8.23) для частных случаев
- •8.4. Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения
- •8.5. Конструкции реакторов
- •Контрольные вопросы
- •Глава 9 производство серной кислоты
- •9.1. Способы производства серной кислоты
- •9.2. Сырье процесса
- •9.3. Промышленные процессы получения серной кислоты
- •9.4. Пути совершенствования сернокислотного производства
- •Контрольные вопросы
- •Глава 10 производство аммиака
- •10.1. Проблема связанного азота
- •10.2. Получение азота и водорода для синтеза аммиака
- •10.3. Синтез аммиака
- •Контрольные вопросы
- •Глава 11 переработка нефти
- •11.1. Общие сведения о нефти
- •11.2. Классификация нефтей
- •11.3. Состав нефти
- •11.4. Нефтепродукты
- •11.5. Подготовка нефти на нефтепромыслах
- •11.6. Первичная переработка нефти
- •11.7. Пиролиз
- •11.8. Коксование
- •11.9. Каталитический крекинг
- •11.10. Каталитический риформинг
- •11.11. Гидроочистка
- •11.12. Производство нефтяных масел
- •Контрольные вопросы
- •Глава 12 переработка каменного угля
- •12.1. Показатели качества каменных углей
- •12.2. Классификация углей
- •12.3. Коксование каменных углей
- •Коксование
- •Тушение
- •Разгонка
- •12.4. Состав прямого коксового газа и его разделение
- •12.5. Переработка сырого бензола
- •12.6. Переработка каменноугольной смолы
- •12.7. Газификация твердого топлива. Процесс Фишера – Тропша
- •Контрольные вопросы
- •Глава 13 производство стирола
- •13.1. Получение этилбензола
- •13.2. Производство стирола дегидрированием этилбензола
- •13.3. Технологическая схема производства стирола дегидрированием этилбензола
- •Контрольные вопросы
- •Глава 14 производство этанола
- •Контрольные вопросы
- •Библиографический список
- •Содержание
- •Глава 12. Переработка каменного угля 231
- •Глава 13. Производство стирола 246
- •Глава 14. Производство этанола 252
4.3. Операторы
Функционирование подсистем складывается из функций операторов – простейших элементов подсистемы. Операторами в ХТС называют химические и физические процессы, с помощью которых осуществляется последовательное превращение исходного сырья в товарный продукт. Функцией оператора в подсистеме является преобразование физических параметров входящих в него материальных и энергетических потоков (состав, температура, давление и др.) в соответствующие параметры выходящих потоков. К примеру, оператор «нагрев» повышает температуру потока от Твх до Твых, а оператор «реакция» А В снижает концентрацию реагента А от САо до САк и увеличивает концентрацию продукта В от СВо до СВк. Таким образом, с позиций моделирования каждой технологической операции соответствует свой оператор. На рисунке 4.1 показаны обозначения различного типа операторов.
Типовые технологические
операторы
Основные
технологические Вспомогательные
технологические
операторы
операторы
Химиче- Межфаз- Смеше- Разде- Нагрев Сжатие Изменение агрегатного
ское пре- ный мас- ние ление состояния вещества
вращение сообмен
Рис. 4.1. Обозначения операторов
Технологические операторы подразделяются на основные и вспомогательные. К основным относят операторы химического превращения, межфазного массообмена, смешения и разделения, а к вспомогательным – операторы, изменяющие энергетическое и фазовое состояния технологических потоков. Функционирование ХТС как целого осуществляется по линиям связей между элементами.
В любой ХТС устанавливается основное направление движения материальных потоков. Нумеруя узлы модели ХТС, всегда придерживаются этого направления. При этом потоки, идущие из узлов с меньшими номерами к узлам с большими номерами, называют прямыми, а идущие в обратном направлении – обратными.
В качестве параметров, характеризующих качество структурной схемы при представлении ее графом, можно выделить следующие: связность графа, ранг элемента, множество сочленения.
Эти параметры позволяют распределить элементы схемы в порядке их значимости. Значимость элемента определяется количеством связей данного элемента с другими. Исходя из общего определения понятия множества сочленения, его можно трактовать так же, как некоторый структурный параметр, указывающий на состояние системы при удалении элементов, т.е. при удалении каких элементов системы она перестает существовать как единое целое.
На рисунке 4.3 а приведена схема разделения, а соответствующий ей ориентированный граф – на рисунке 4.3 б.
2 5
6
4 8 10 1
А Д Б В Г а 9 7 11 3
б А Д Б В Г
Рис. 4.3. Технологическая схема (а) и соответствующий ей ориентированный граф (б)