
- •1) Развитие представлений о природе света. Фотометрические величины: световой поток, сила света, освещенность, светимость и яркость света.
- •2 Световые волны и их основные свойства, скорость света, световой вектор. Интенсивность световых волн.
- •3.Интерференция света. Условия максимума и минимума. Когерентность и монохроматичность световых волн.
- •5. Расчет интерференционной картины от двух источников. Интерференция света в тонкой пленке, наблюдение колец Ньютона.
- •6.Дифракция Френеля и Фраунгофера. Метод зон Френеля, усиление света с помощью зонной пластинки.
- •7.Условие наблюдения дифракции Френеля, дифракция Френеля на круглом отверстии и экране
- •13.Основные положения молекулярно-кинетической теории вещества. Газы, жидкости и твердые тела. Статистический и термодинамический методы исследования.
- •14.Термодинамические параметры. Состояние термодинамического равновесия. Уравнение состояния термодинамической системы.
- •15.Кинетическая теория идеального газа. Основные законы классической статистики. Основное уравнение кинетической теории идеального газа.
- •16.Статистический смысл термодинамической температуры. Средняя квадратичная скорость молекул идеального газа.
- •17.Средняя длина свободного пробега и среднее число столкновений молекул газа. Зависимость длины свободного пробега от параметров газа.
- •18.Диффузия. Закон Фика. Связь коэффициента диффузии со средней длиной свободного пробега молекул и его зависимость от параметров газа. Теплопроводность и вязкость.
- •22.Теплоемкость вещества. Теплоемкости при постоянном объеме и постоянном давлении идеального газа. Уравнение Майера.
- •24.Работа, внутренняя энергия и теплота в адиабатическом процессе. Уравнение Пуассона и показатель адиабаты.
6.Дифракция Френеля и Фраунгофера. Метод зон Френеля, усиление света с помощью зонной пластинки.
Дифракция Фраунгофера — случай дифракции, при котором дифракционная картина наблюдается на значительном расстоянии от отверстия или преграды. Расстояние должно быть таким, чтобы можно было пренебречь в выражении для разности фаз членами порядка , что сильно упрощает теоретическое рассмотрение явления. Здесь — расстояние от отверстия или преграды до плоскости наблюдения, — длина волны излучения, а — радиальная координата рассматриваемой точки в плоскости наблюдения в полярной системе координат. Иными словами, дифракция Фраунгофера наблюдается тогда, когда число зон Френеля , при этом приходящие в точку волны являются практически плоскими. При наблюдении данного вида дифракции изображение объекта не искажается и меняет только размер и положение в пространстве. В противоположность этому, при дифракции Френеля изображение меняет также свою форму и существенно искажается.
Дифракционные явления Фраунгофера имеют большое практическое значение, лежат в основе принципа действия многих спектральных приборов, в частности, дифракционных решёток. В последнем случае для наблюдения светового поля «в бесконечности» используются линзы или вогнутые дифракционные решетки (соответственно, экран ставится в фокальной плоскости).
Дифра́кция Френе́ля — дифракционная картина, которая наблюдается на небольшом расстоянии от препятствия, по условиям, когда основной вклад в интерференционную картину дают границы экрана.
На рисунке схематично изображён (слева) непрозрачный экран с круглым отверстием (апертура), слева от которого расположен источник света. Изображение фиксируется на другом экране - справа. Вследствие дифракции свет, проходящий через отверстие, расходится, поэтому область, которая была затемнена по законам геометрической оптики, будет частично освещённой. В области, которая при прямолинейном распространении света была бы освещённой, наблюдаются колебания интенсивности освещения в виде концентрических колец.
Дифракционная картина для дифракции Френеля зависит от расстояния между экранами и от расположения источников света. Её можно рассчитать, считая, что каждая точка на границе апертуры излучает сферическую волну по принципу Гюйгенса. В точке наблюдения (занимаемое вторым экраном) волны или усиливают друг друга, или гасятся в зависимости от разности хода.
Метод зон Френеля Френель предложил метод разбиения фронта волны на кольцевые зоны, который впоследствии получил название метод зон Френеля.
Пусть от источника света S распространяется монохроматическая сферическая волна, P - точка наблюдения. Через точку O проходит сферическая волновая поверхность. Она симметрична относительно прямой SP.
Разобьем эту поверхность на кольцевые зоны I, II, III и т.д. так, чтобы расстояния от краев зоны до точки P отличались на l/2 - половину длины световой волны. Это разбиение было предложено O. Френелем и зоны называют зонами Френеля.
Возьмем произвольную точку 1 в первой зоне Френеля. В зоне II найдется, в силу правила построения зон, такая соответствующая ей точка, что разность хода лучей, идущих в точку P от точек 1 и 2 будет равна l/2. Вследствие этого колебания от точек 1 и 2 погасят друг друга в точке P.
Зонная пластинка — плоскопараллельная стеклянная пластинка с выгравированными концентрическими окружностями, радиус которых совпадает с радиусами зон Френеля. Зонная пластинка «выключает» чётные либо нечётные зоны Френеля, чем исключает взаимную интерференцию (погашение) от соседних зон, что приводит к увеличению освещённости точки наблюдения. Таким образом, зонная пластинка действует как собирающая линза.
Также зонная пластинка представляет собой простейшую голограмму — голограмму точки.
Интенсивность света в точке наблюдения P можно во много раз усилить, прикрыв все четные или все нечетные зоны Френеля. Оставшиеся неприкрытыми зоны будут усиливать действие друг друга. Прикрытие можно осуществить, поместив в плоскости отверстия так называемую зонную пластинку (рисунок 1). Ее можно изготовить, начертив на листе бумаги темные кольца, а затем сфотографировав их в уменьшенном масштабе. Внутренние радиусы колец должны быть пропорциональны квадратным корням из последовательных нечетных чисел, а внешние − из четных. Тогда получится пластинка, центр которой светлый. Можно изготовить аналогичную пластинку с темным центром. Ширина всех колец должна быть велика по сравнению с длиной волны. Тогда при надлежащих размерах колец пластинка со светлым центром будет удалять из волнового фронта все четные, а пластинка с темным центром − все нечетные зоны Френеля.
Зонная пластинка
Рисунок 1
Усиление интенсивности света зонной пластинкой аналогично фокусирующему действию линзы. Более того, расстояния от пластинки до источника S и «изображения» P связаны тем же соотношением, что и соответствующие величины для линзы. Это видно из формулы:
Где «фокусное расстояние» определяется формулой:
Если центр зонной пластинки светлый, то число m − нечетное, в этом случае в формулу входит (внешний) радиус светлого кольца пластинки. Если же центр пластинки темный, то число m − четное и под Rm следует понимать (внешний) радиус темного кольца. Какой номер брать при вычислении f − это, конечно, не имеет значения.
С помощью зонной пластинки можно даже получать оптические изображения, хотя и весьма низкого качества.
В отличии от линзы зонная пластинка имеет несколько фокусов.