Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shp_fizika_medits_1.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
268.8 Кб
Скачать

7. Медицинская вискозиметрия. Принцип работы мед вискозиметра.

Вискозиметрия-совокупность методов измерения вязкости, с помощью прибора вискозиметра.

Принцип работы медицинского вискозиметра : скорость продвижения жидкостей в капиллярах с одинаковыми сечениями при равной t0 и р зависит от вязкости этих жидкостей.

Мед вискозиметр состоит из 2х одинаковых градуированных капилляров А1 и А2 В капилляр А1 набирают определенный V дистиллированной воды, перекрывают кран Б.Это позволяет набрать исследуемую жидкость в капилляр А2, не изменяя уровень воды. Если теперь открыть кран б и создать разрежение в вискозиметре, то перемещение l жидкостей за одно и то же время будет пропорциональным их вязкости.

ηx0 =l0/lx ηx= η0 l0/lx

8.Явление пов натяжения. Капиллярность. Причины газовой и жировой эмболии сосудов.

Пов натяжение жидкости заключается в стремлении вещества уменьшить избыток своей потенциальной энергии на границе раздела с др фазой (пов энергию). На пов-тях раздела жид-ти и ее насыщ пара, двух несмешиваемых жид-й, жид-ти и тв тела возникает сила, обусловленная различным межмолекулярным взщаимодействием граничащих сред.Силы пов натяжения направлены по касательной к поверхности жидкости, перпендикулярно к участку контура на котор они действуют и пропорциональныдлине этого участка. Коэф-т пов натяжения α=F/l=A/S

Капиллярность-физ явление, заключающееся в способности жидкостей изменять уровень в трубках, узких каналах произвольной формы, пористых телах. Поднятие – в случае смачивания.

Газовая и жировая эмболия

Эмболия-явление закупорки сосуда пузырьком воздуха(каплей жира),чреватое лишением кровоснабжения какого-либо сосуда или органа.

Газовая эмболия возникает при:

-порезах крупных вен(там большое давление) и происходит закупорка.

-при подключении капельницы в крупную вену (как правило, подключичную) при отсутствии жидкости в сосуде и подключенному к нему катетору.

При течении пузырька с кровью,передняя часть пузырька вытягивается,задняя сплющивается.В задней части Р1 меньше,чем Р2.Добавочное давление Р приводит к закупорке сосуда.

При жировой эмболии процессы теже самые.Она возникает при переломах костей,кода капельки жира проникают в сосуды.Затем после этого возникает тромбоэмболия(возникновение тромба в сосуде)

9.Тоны Короткова. Физические основы применения неинвазивного метода Короткова для измерения систолического и диастолического давлений.

Метод Короткова – бескровный метод измерения систолического и диастолического давления крови в плечевой артерии.Тоны Короткова - звуки, которые слышны с помощью фонендоскопа, помещенного на лучевой артерии, при нагнетании воздуха в манжетку и его постепенном выпускании. Систолическое (верхнее) артериальное давление — это уровень давления крови в момент максимального сокращения сердца. Диастолическое (нижнее) артериальное давление — это уровень давления крови в момент максимального расслабления сердца. Метод Короткова предусматривает для измерения артериального давления очень простой тонометр, состоящий из механического манометра, манжеты с грушей и фонендоскопа. Метод основан на полном пережатии манжетой плечевой артерии и выслушивании тонов, возникающих при медленном выпускании воздуха из манжеты.

Если мускулатура расслаблена, то давление воздуха внутри манжеты, состоящей из эластичных стенок, приблизительно равно давлению в мягких тканях, соприкасающихся с манжетой – основная идея бескровного метода Короткова.Сначала избыточное над атмосферным давление воздуха в манжете равно нулю, манжета не сжимает руку и артерию. По мере накачивания воздуха в манжету последняя сдавливает плечевую артерию и прекращает ток крови. Выпуская воздух, уменьшают давление в манжете и в мягких тканях, с которыми она соприкасается. Когда давление станет равным систолическому, кровь будет способна пробиться через сдавленную артерию – возникает турбулентное течение. Этот процесс сопровождают характерные тоны и шумы (тоны Короткова). Продолжая уменьшать давление в манжете, можно восстановить ламинарное течение крови – резкое ослабление прослушиваемых тонов – диастолическое давление.

10. Сочленения и рычаги в опорно-двигательном аппарате человека; механическая работа человека эргометрия.*Опорно-двигательный аппарат человека состоит из сочлененных между собой костей скелета, к которым в определенных точках прикрепляются мышцы. Кости скелета действуют как рычаги, которые имеют точку опоры в сочленениях и приводятся в движение силой тяги, возникающей при сокращении мышц. Рычагом называется твердое тело, которое может вращаться около неподвижной оси. Различают три вида рычагов:

1) Когда точка опоры лежит между точками приложения действующей силы F и силы сопротивления R. Условие равновесия рычага Fа = Rb.

Пример: череп, рассматриваемый в сагиттальной плоскости. Ось вращения проходит через сочленение черепа с первым позвонком. R - сила тяжести головы, приложенная в центре тяжести. F - сила тяги мышц и связок, прикрепленных к затылочной кости.

2) Когда точка опоры лежит за точкой приложения силы сопротивления R, а сила F приложена на конце рычага.Условие равновесия рычага Fa = Rb, но а > b, следовательно, F > R, то есть рычаг дает выигрыш в силе, но проигрыш в перемещении и называется рычагом силы.

Пример: действие свода стопы при подъёме на полупальцы. Опорой служат головки плюсневых костей. R - сила тяжести всего тела, приложена к таранной кости. F - мышечная сила, осуществляющая подъём тела, передается через ахиллово сухожилие и приложена к выступу пяточной кости.

3) Когда сила F приложена ближе к точке опоры, чем сила R.Условие равновесия рычага . Fa=Rb,но а < b, следовательно, F > R, то есть рычаг дает проигрыш в силе, но выигрыш в перемещении и называется рычагом скорости.

Пример: кости предплечья. Точка опоры находится в локтевом суставе. F - сила мышц, сгибающих предплечье, R - сила тяжести поддерживаемого груза, приложенная обычно к кисти, а также сила тяжести самого предплечья.

Кости опорно-двигательного аппарата соединяются между собой в сочленениях или суставах.

Основной механической характеристикой сустава является число степеней свободы.

Различают суставы с 1, 2 и 3 степенями свободы.

Примеры: плече-локтевой сустав - одна степень свободы;

лучезапястный сустав - две степени свободы;

тазобедренный сустав, лопаточно-плечевое сочленение - три степени свободы (сгибание и разгибание, приведение и отведение, вращение).

*Человек с помощью мышц совершает механическую работу, которая обусловлена силой мышц и развиваемой ими мощностью. Средняя мощность, развиваемая человеком, не занятым специально физическим трудом, весьма невелика и, например, при ходьбе по ровной местности составляет 100-200 вт в зависимости от скорости.

Усталость свидетельствует о том, что мышцы совершают работу, хотя перемещения нет и работа равна нулю. Такую работу называют статической работой мышц.

Исследование работоспособности мышц называется эргометрией, а соответствующие приборы - эргометрами.

Пример: тормозной велосипед (велоэргометр). F - сила трения между лентой и ободом колеса, измеряемая динамометром. Вся работа испытуемого затрачивается на преодоление силы трения.

Тогда A = Fтр l = Fтр 2 r - за один оборот,

A = n Fтр 2 r - за n оборотов - средняя мощность.

Когда мышцы совершают работу, в них освобождается химическая энергия, накопленная в процессе метаболизма; она частично превращается в механическую работу, а частично теряется в виде тепла.

11. Работа, совершаемая сердцем, затрачивается на преодоление сопротивления и сообщение крови кинетической энергии.Рассчитаем работу, совершаемую при однократном сокращении левого желудочка.Vу – ударный объем крови в виде цилиндра. Можно считать, что сердце поставляет этот объем по аорте сечением S на расстояние I при среднем давлении р. Совершаемая при этом работа равна:A1 = FI = pSI = pVy.На сообщение кинетической энергии этому объему крови затрачена работа:

где р – плотность крови;

υ – скорость крови в аорте.

Таким образом, работа левого желудочка сердца при сокращении равна:

Так как работа правого желудочка принимается равной 0,2 от работы левого, то работа всего сердца при однократном сокращении равна:

Эта формула справедлива как для покоя, так и для активного состояния организма, но эти состояния отличаются разной скоростью кровотока. Физические основы химического метода измерения давления крови. Физический параметр – давление крови – играет большую роль в диагностике многих заболеваний.Систолическое и диастолическое давления в какой-либо артерии могут быть измерены непосредственно с помощью иглы, соединенной с манометром. Однако в медицине широко используется бескровный метод, предложенный Н. С. Коротковым. Суть метода: вокруг руки между плечом и локтем накладывают манжетку. При накачивании воздуха через шланг в манжетку рука сжимается. Затем через этот же шланг воздух выпускают и с помощью манометра измеряют давление воздуха в манжете. Выпуская воздух, уменьшают давление в манжете и в мягких тканях, с которыми она соприкасается. Когда давление станет равно систолическому, кровь будет способна пробиться через сдавленную артерию – возникает турбулентное течение. Характерные тоны и шумы, сопровождающие этот процесс, прослушивает врач при измерении давления, располагая фонендоскоп на артерии ниже манжеты (т. е. на большом расстоянии от сердца). Продолжая уменьшать давление в манжете, можно восстановить ламинарное течение крови, что заметно по резкому ослаблению прослушиваемых тонов. Давление в манжете, соответствующее восстановлению ламинарного течения в артерии, регистрируют как ди-астолическое. Для измерения артериального давления применяют приборы – сфигмоманометр с ртутным манометром, сфигмотонометр с металлическим мембранным манометром.

12. Центрифугирование — это процесс разделения неоднородных систем на фракции под действием центробежных сил. Для осуществления процесса центрифугирования используются центрифуги.

Лабораторные центрифуги делятся на несколько типов по размерам и месту расположения: Настольные центрифуги — это наиболее часто встречающийся тип центрифуг в лабораториях. В мировой практике настольные лабораторные центрифуги имеют массу от 1 до 100 кг. Подстольные центрифуги — довольно узкий класс центрифуг, появление которых обусловлено желанием сэкономить место в лаборатории. Высота данного класса центрифуг составляет, обычно, до 700 мм, а все органы управления расположены на верхней крышке. Стационарные центрифуги располагаются на полу в лаборатории и устанавливаются на встроенных в центрифугу домкратах. Основным параметром при центрифугировании является относительное центробежное ускорение А (безразмерная величина) — это величина, показывающая во сколько раз центробежное ускорение В в роторе центрифуги больше земного тяготения, обычно обозначаемого g. Величина А рассчитывается по следующей формуле:  А=11,18·10-7· r·n2

где r — расстояние в мм от оси вращения ротора до точки, для которой рассчитывается центробежное ускорение n — частота вращения ротора в об./мин.

Центрифугирование – процесс разделения суспензий и эмульсий в поле центробежных сил с использованием сплошных или проницаемых для жидкости перегородок. Процессы центрифугирования проводят в центрифугах.

Основная часть центрифуги – барабан со сплошными или перфорированными стенками, вращающийся в основном в неподвижном кожухе. Внутренняя поверхность ротора с перфорированными стенками часто покрывается фильтровальной тканью или тонкой металлической сеткой. Под действием центробежных сил суспензия разделяется на осадок и жидкую фазу – фугат. Используют центрифуги фильтрующие и отстойные. В фильтрующих центрифугах разделяют суспензии. Стенки фильтрующих центрифуг имеют отверстия, а на их внутренней стороне укладывается фильтровальная перегородка. Эта перегородка пропускает фильтрат, который движется под действием центробежной силы, задерживая осадок. Отстойные центрифуги имеют сплошные стенки, и разделение суспензий и эмульсий происходит по принципу отстаивания, но под действием центробежной силы. Фаза с большей плотностью располагается ближе к стенкам ротора, а фаза меньшей плотности (фугат) располагается ближе к оси. В зависимости от режима работы центрифуги бывают периодического, полунепрерывного и непрерывного действия. Выгрузка осадка может производиться вручную или автоматически. По расположению вала различают горизонтальные и вертикальные центрифуги. Используются центрифуги периодического действия: подвесные, фильтрующие, осадительные, трубчатые, вибрационные и др. Разделение эмульсий проводится в сепараторах (однокамерных, тарельчатых и др.) периодического или непрерывного действия. Наиболее распространено разделение в тарельчатых сепараторах с коническими тарелками. Малое расстояние между тарелками (0,3–0,4 мм – для молочных и 0,8–1 мм – для дрожжевых сепараторов) приводит к образованию ламинарного течения между этими тарелками. Поэтому эффект вторичного смешивания потоков существенно уменьшается и удается получить достаточно хорошее разделение компонентов эмульсии. Центробежные жидкостные сепараторы широко применяются в пищевой промышленности, в частности для сепарации молока (отделения от молока сливок). Применение центробежной силы для процессов разделения суспензий и эмульсий значительно интенсифицирует процесс. Однако не удается полностью провести разделение, в связи с этим в некоторых случаях необходимо проводить дополнительную обработку (отжим, сушку пасты, обезвоживание и др.).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]