
- •1. Электрический заряд и его свойства.
- •2. Закон сохранения электрического заряда. Закон Кулона.
- •3. Электростатическое поле и его характеристики : напряженность, линии напряженности, поток вектора напряженности. Единицы измерения.
- •4. Принцип суперпозиции электростатических полей. Электрический диполь. Электрический момент диполя.(дипольный момент)
- •5 . Теорема Гаусса для электростатического поля в вакууме.
- •6. Циркуляция вектора напряженности электростатического поля Теорема о циркуляции вектора напряженности.
- •Циркуляция вектора напряженности — циркуляция вектора напряженности магнитного поля по некоторому контуру равна алгебраической сумме макроскопических токов, охватываемых этим контуром.
- •Циркуляция вектора напряженности — называется работа, которую совершают электрические силы при перемещении единичного положительного заряда по замкнутому пути l
- •7. Потенциал электростатического поля. Работа по перемещению точечного заряда. Разность потенциалов.
- •8. Связь между напряженностью и потенціалом. Эквипотенциальные поверхности.
- •9. Диэлектрики. Виды диэлектриков.
- •11. Проводники в электростатическом поле. Явление электростатической индукции.
- •12 Конденсаторы. Виды конденсаторов. Электрическая емкость конденсатора. Единица измерения.
- •13. Соединение конденсаторов в батареи.
- •15. Электрический ток и его характеристики: cила и плотность тока. Единицы измерения. Характеристики
- •16. Сторонние силы. Электродвижущая сила и напряжение.
- •17. Сопротивление проводников, электрическая проводимость. Единицы измерения. Зависимость сопротивления от температуры
- •18. Закон Ома для однородного участка цепи и замкнутой цепи. Закон Ома для неоднородного участка цепи (обобщенный закон Ома).
- •19. Работа и мощность тока. Закон Джоуля-Ленца.
- •20.Правила Кирхгофа для разветвленных цепей
- •21. Магнитное поле и его характеристики : магнитная индукция, напряженность, линии магнитной индукции
- •22. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей.
- •23. Закон Ампера. Правило Левой руки.
- •24. Сила Лоренца. Правило Левой руки.
- •25. Теорема о циркуляции вектора индукции магнитного поля. Магнитное поле соленоида и тороида.
- •26. Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля.
- •27. Работа по перемещению проводника с током в магнитном поле.
- •28. Электромагнитная индукция. Опыты Фарадея. Закон электромагнитной индукции.
- •29. Правильно Ленца. Вращение Рамки в магнитном поле. Вихревые токи (Токи Фуко)
- •30. Индуктивность контура. Самоиндукция.
- •31. Трансформаторы. Энергия магнитного поля.
- •32.Магнетики и их виды: пара-, диа- и ферромагнетики.
- •33. Эффект Холла
- •35. Маятники: пружинный, математический, физический. Уравнения движения и их решения.
- •36. Колебательный контур. Уравнение электромагнитных колебаний для идеализированного колебательного контура.
- •37. Свободные затухающие колебания. Дифференциальное уравнение свободных затухающих колебаний линейной системы и его решение.
- •38. Свободные затухающие колебания пружинного маятника. Дифференциальное уравнение и его решение.
- •39 Свободные затухающие колебания в электрическом колебательном контуре. Дифференциальное уравнение и его решение.
- •40 Характеристики затухающих колебаний: коэффициент затухания, время релаксации, логарифмический декремент, добротность.
- •51 Линзы и их характеристики. Формула тонкой линзы. Построение изображений в линзах. Аберрации (погрешности) оптических систем.
- •Фотометрия. Энергетические и световые величины в фотометрии. Единицы измерения.
- •Природа света
- •55.Интерференция света. Методы наблюдения интерференции. Применение интерференции.
- •56.Дифракция света. Принцип Гюйгенса-Френеля. Дифракция Фраунгофера на щели и дифракционной решетке.
- •Поляризация света. Естественный и поляризованный свет. Закон Малюса.
- •58.Тепловое излучение и его характеристики. Законы теплового излучения.
32.Магнетики и их виды: пара-, диа- и ферромагнетики.
Магнетики — материалы, вступающие во взаимодействие с магнитным полем, выражающееся в его изменении, а также в других физических явлениях — изменение физических размеров, температуры, проводимости, возникновению электрического потенциала и т. д.
Парамагнетики - это вещества, намагничивающиеся во внешнем магнитном поле по направлению поля (например редкоземельные металлы, Pt, Al).У парамагнетиков при отсутствии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и молекулыпарамагнетиков всегда обладают магнитным моментом (такие молекулы называются полярными).Вследствие теплового движения молекул их магнитные моменты ориентированы беспорядочно, поэтому в отсутствие магнитного поля,парамагнетики магнитными свойствами не обладают.Таким образом, парамагнетики намагничиваются, создавая собственное магнитное поле, совпадающее по направлению с внешним полем и усиливающим его. Этот эффект называется парамагнитным. Если магнитный момент атомов (молекул) велик, то парамагнитные свойства преобладают наддиамагнитными и вещество является парамагнетиком
Диамагне́тики —
вещества, намагничивающиеся против
направления внешнего магнитного
поля.
В отсутствие внешнего магнитного поля
диамагнетики немагнитны. Под действием
внешнего магнитного поля каждый атом
диамагнетика приобретает магнитный
момент ,
пропорциональный магнитной
индукции B
и направленный навстречу полю.
Поэтомумагнитная
восприимчивость
=
M/H
у диамагнетиков всегда отрицательна.
По абсолютной величине диамагнитная
восприимчивость
мала
и слабо зависит как от напряжённости
магнитного поля, так и от температуры.
ферромагнетики — это вещества, у которых магнитная проницаемость μ очень велика (μ»1). Кроме того, ферромагнетики обладают еще и другими свойствами, существенно отличающими их от диа- и парамагнетиков. Особые свойства ферромагнетиков обусловливаются двумя факторами: 1) наличием нескомпенсированных магнитных моментов в недостроенных электронных оболочках; 2) особой кристаллической структурой ферромагнетиков.
ферромагнетизм обусловлен спиновым магнитным моментом электронов, а не их орбитальным движением. Причем в этих веществах образуются целые области (домены), в которых нескомпенсированные спиновые моменты ориентированы в одном направлении. При отсутствии магнитного поля домены ориентированы хаотически, а при наложении внешнего магнитного поля ориентируются вдоль него
Этим объясняются свойства ферромагнетиков:
1) ферромагнитные свойства вещества проявляются только тогда, когда соответствующее вещество находится в кристаллическом состоянии;
2) для каждого вещества имеется определенная температура (точка Кюри), выше которой ферромагнитные свойства исчезают и ферромагнетик превращается в обычный парамагнетик;
3) магнитная проницаемость ферромагнетика зависит от внешнего магнитного поля (рис. 2).
4) ферромагнетики намагничиваются до насыщения в слабых магнитных полях.
5) у ферромагнетиков наблюдается остаточная намагниченность.