
- •Введение
- •Глава 1. Погрешность результата численного решения задачи
- •1.1. Источники и классификация погрешностей
- •1.2. Абсолютная и относительная погрешности. Формы записи данных.
- •1.3. Вычислительная погрешность
- •Глава 2. Решение нелинейных уравнений
- •2.1. Отделение корней уравнения
- •2.1.1. Аналитический метод отделения корней
- •2.1.2. Графический метод отделения корней
- •2.2. Уточнение приближенных корней
- •2.2.1. Метод половинного деления
- •2.2.2 Метод хорд
- •2.2.3. Метод Ньютона – метод касательных
- •2.2.4. Модифицированный метод Ньютона
- •2.2.5. Метод секущих
- •2.2.6. Метод итераций
- •Глава 3. Решения систем линейных алгебраических уравнений
- •3.1. Метод итераций
- •3.1.1. Оценка погрешности приближений процесса итераций
- •3.1.2. Приведение линейной системы к виду, удобному для итерации:
- •3.2. Метод Зейделя
- •3.3. Метод релаксаций
- •Глава 4. Решение систем нелинейных уравнений
- •4.1. Метод Ньютона для систем нелинейных уравнений
- •4.2. Распространение метода Ньютона на системы из n уравнений с n неизвестными
- •4.3. Метод итераций для систем нелинейных уравнений
- •4.4. Распространение метода итераций на системы из n уравнений с n неизвестными
- •Глава 5. Интерполяция
- •5.1. Постановка задачи интерполирования
- •5.2. Конечные разности
- •5.3. Интерполяционная формула Ньютона №1
- •5.4. Интерполяционная формула Ньютона №2
- •5.5. Интерполяционный многочлен Лагранжа
- •5.5.1. Вычисление лагранжевых коэффициентов
- •5.5.2. Схема Эйткина
- •5.5.3. Остаточный член формулы Лагранжа
- •5.6. Обратное интерполирование
- •5.6.1 Итерационные методы для обратного интерполирования
- •Глава 6. Аппроксимация функций с помощью сплайнов
- •6.1. Кубические сплайны
- •Глава 7. Методы обработки экспериментальных данных
- •7.1 Построение эмпирической формулы.
- •7.2. Метод выбранных точек (метод натянутой нити)
- •7.3 Метод средних
- •7.4. Метод наименьших квадратов
- •7.5. Метод выравнивания
- •7.6. Метод наименьших квадратов для полиномов
- •Глава 8. Численное интегрирование
- •8.1. Квадратурные формулы Ньютона-Котеса
- •8.1. Формула трапеций и ее остаточный член
- •8.2. Общая формула трапеций и ее остаточный член
- •8 .3 Формула Симпсона и ее остаточный член
- •8.4. Общая формула Симпсона и ее остаточный член
- •8.5. Формулы Ньютона-Котеса высших порядков
- •8.6. Квадратурная формула Чебышева
- •8.7. Квадратурная формула Гаусса
- •Глава 9. Приближенное решение обыкновенных дифференциальных уравнений
- •9.1. Аналитические методы
- •9.1.1. Метод последовательного дифференцирования
- •9.1.2. Метод последовательных приближений.
- •9.1.3 Метод неопределенных коэффициентов.
- •9.2. Численные методы
- •9.2.1. Метод Эйлера
- •9.2.2. Модифицированные методы Эйлера Первый улучшенный метод Эйлера
- •Второй улучшенный метод Эйлера
- •Третий улучшенный метод Эйлера
- •9.2.3. Метод Рунге-Кутта для уравнений первого порядка
- •Список литературы
3.1.1. Оценка погрешности приближений процесса итераций
Пусть
и
- два последовательных приближения
системы (3.2). Тогда для приближения
справедлива оценка
:,
если выполнено первое условие теоремы 3.1, или
,
если выполнено второе условие теоремы 3.1. Процесс итерации заканчивают, когда указанные оценки свидетельствуют о достижении заданной точности ε.
или
3.1.2. Приведение линейной системы к виду, удобному для итерации:
Сходимость
накладывает жесткие условия на
коэффициенты данной линейной системы
.
Однако, если
,
то с помощью линейного комбинирования
уравнений системы, последнюю всегда
можно заменить эквивалентной системой
,
такой, что условия сходимости будут
выполнены. Умножим уравнение (3.1) на
матрицу
,
где
- матрица с малыми по модулю, одинаковыми
элементами. Тогда будем иметь:
или
,
где
и
.
Все элементы
матрицы ε выбираем одинаковыми из
условия
.
Это обеспечивает выполнение достаточного
условия сходимости метода.
Пример 3.1 Решить систему методом итераций в Mathcad с тремя верными цифрами после запятой
Точность вычислений
Решение исходной системы матричным методом
2*I+II
II+2*III
II-3III
В качестве начального приближения возьмем столбец свободных членов, сделаем 6 приближений, вектор разностей между соседними приближениями обозначим z. Результаты поместим в матрицу x.
Ответ:
3.2. Метод Зейделя
Метод
Зейделя является модификацией метода
итерации. Он заключается в том, что при
вычислении (k+1)-го
приближения неизвестного
при i>1
используют уже вычисленные ранее (k+1)-е
приближения неизвестных
Пусть
дана приведенная линейная система
Выберем
произвольно начальные приближения
корней
,
Далее,
предполагая, что k-е
приближения
корней известны, согласно Зейделю будем
строить (k+1)-е
приближения корней по следующим формулам:
Процесс повторяется до тех пор, пока разница между двумя соседними приближениями не будет меньше необходимой точности.
Условия сходимости те же, что и для метода итераций.
Пример 3.2. Пусть дана линейная система и приближенные корни системы:
и
.
Приведем систему к виду, удобному для итераций
поэтому метод
сходится
Взяв в качестве
начальных приближений:
,
получим:
при k=1
при k
= 2
Найдем разность по модулю между соседними приближениями:
|
-
|
= 0,00048
|
-
|
= 0,00047
|
-
|
= 0,00016
Так как для приведенной системы выполняется условие сходимости при ,то полученное приближение имеет погрешность, не превышающую 0,0005.
Таким образом, в
качестве решения можем принять
.