 
        
        - •Введение
- •Глава 1. Теоретическая часть Пример термодинамического расчета идеализированного цикла поршневого двс со смешанным процессом подвода тепловой энергии к рабочему телу
- •1.1.1. Термодинамический процесс политропного сжатия рабочего тела. Уравнения обмена механической и тепловой энергией между рабочим телом и окружающей средой. Энтропия рабочего тела
- •1.1.1.1. Уравнение термодинамического политропного процесса сжатия [1]
- •1.1.1.2. Энергия в механической форме, которой обмениваются рабочее тело и окружающая среда (в нашем случае это работа изменения объёма), описывается интегральным соотношением [1]
- •1.1.1.4. Важную роль в анализе термодинамических циклов имеет энтропия рабочего тела. По определению [1]
- •1.1.2. Термодинамический изохорный процесс подвода тепловой энергии
- •1.1.3. Термодинамический изобарный процесс подвода тепловой энергии
- •1.1.4. Термодинамический процесс политропного расширения рабочего тела
- •1.1.5. Термодинамический изохорный процесс отвода тепловой энергии
- •1.1.6. Методические рекомендации по расчёту тепловой энергии и изменения энтропии в термодинамических процессах
- •1.2. Определение параметров двигателя
- •1.2.1. Результирующая работа цикла
- •1.2.2. Суммарная тепловая энергия цикла
- •1.2.3. Термический коэффициент полезного действия цикла
- •1.2.4. Среднее индикаторное давление рабочего тела и индикаторная мощность двигателя
- •1.2.5. Цикловой расход топлива, цикловой расход воздуха и коэффициент избытка воздуха
- •1.2.6. Расход топлива двигателем, мощность двигателя и его удельный расход топлива
- •1.3. Индикаторная и тепловая диаграммы цикла
- •1.4. Индикаторная диаграмма двигателя
- •1.5. Внешняя скоростная характеристика двигателя
- •2. Практическая часть. Расчёт идеализированного цикла поршневого двигателя
- •2.1. Исходные данные:
- •2.2. Определение количества рабочего тела, участвующего в осуществлении цикла
- •2.3. Определение значений параметров состояния рабочего тела в характерных точках цикла:
- •2.4. Проверка правильности вычислений параметров состояния рабочего тала в характерных точках цикла
- •2.5. Результирующая работа цикла, среднее индикаторное давление рабочего тела и индикаторная мощность двигателя
- •2.5.2. Среднее индикаторное давление рабочего тела в цикле
- •2.5.3. Индикаторная мощность двигателя
- •2.6. Расчёт тепловой энергии, которой рабочее тело обменивается с окружающей средой
- •2.6.1. Средние мольные теплоёмкости воздуха и обмен тепловой энергией между рабочим телом и окружающей средой в процессе политропного сжатия a-c
- •2.6.2. Средние мольные теплоёмкости воздуха и количество тепловой энергии, подведенной к рабочему телу из окружающей среды в изохорном термодинамическом процессе
- •2.6.3. Средние мольные теплоёмкости воздуха и количество тепловой энергии, подведенной к рабочему телу из окружающей среды в изобарном термодинамическом процессе
- •2.6.4. Средние мольные теплоёмкости воздуха и обмен тепловой энергией между рабочим телом и окружающей средой в процессе политропного расширения рабочего тела
- •2.6.5 Средние мольные теплоёмкости воздуха и количество тепловой энергии, отведенной от рабочего тела в окружающую среду в изохорном термодинамическом процессе b-a
- •2.7. Расчёт параметров двигателя
- •2.7.1. Термический коэффициент полезного действия цикла
- •2.7.2. Цикловой расход топлива, цикловой расход воздуха и коэффициент избытка воздуха
- •2.8.Изменение энтропии в термодинамических процессах цикла
- •2. 9. Построение индикаторной диаграммы цикла
- •2.9.1. Назначение и значимость индикаторной диаграммы цикла
- •2.9.2. Последовательность построения индикаторной и тепловой диаграмм цикла и результаты расчётов параметров для построения диаграмм
- •2.10. Индикаторная диаграмма двигателя
- •2.11. Внешняя скоростная характеристика двигателя
- •2.12. Выводы
- •Приложения
- •Литература
1.4. Индикаторная диаграмма двигателя
Полученная в эксперименте индикаторная диаграмма двигателя – важное средство в анализе термодинамических циклов и работы двигателя в целом. Экспериментальная индикаторная диаграмма позволяет уточнить форму цикла, установить закон горения топлива, определить максимальные значения давления и температуры рабочего тела. С помощью такой диаграммы можно оптимизировать адаптацию турбонагнетателя к двигателю. Индикаторная диаграмма двигателя представляет собой зависимость давления рабочего тела во время совершения цикла от угла поворота кривошипа (угла поворота коленвала двигателя). В курсовом проекте необходимо получить расчётную индикаторную диаграмму двигателя и изобразить её графически.
Так как ранее уже были получены зависимости для расчёта давления от объёма рабочего тела в термодинамическом цикле, то для построения индикаторной диаграммы необходимо дополнительно получить зависимость и для угла поворота кривошипа от объёма рабочего тела.
Возможен и другой подход. В этом подходе следует первоначально определить границы изменения угла поворота кривошипа при совершении каждого термодинамического процесса. Затем, задаваясь значениями угла поворота кривошипа в этих выделенных интервалах, определять соответствующие значения объёма рабочего тела, а по уравнениям термодинамических процессов определять давление рабочего тела. В курсовом проекте рекомендуется использовать эту методику построения индикаторной диаграммы двигателя.
Из простых геометрических соображений можно получить упрощенное уравнение для определения аналитической связи между объёмом рабочего тела и углом поворота кривошипа. Соответствующие обозначения и оси для отсчёта угла поворота кривошипа приведены на рис.2.
 7.1
                                                     7.1
 7.2
                                                                     
                     7.2
В этих уравнениях:
 –
текущий объём рабочего тела;
–
текущий объём рабочего тела;
 – объём рабочего тела в конце
термодинамического процесса сжатия;
– объём рабочего тела в конце
термодинамического процесса сжатия;
 –
степень сжатия;
–
степень сжатия;
 – угол поворота кривошипа.
– угол поворота кривошипа.
Расчёты, выполненные с использованием уравнений 7.1 и 7.2, позволяют получить достаточно полное представление об индикаторной диаграмме двигателя.
 
Vmin
ВМТ
Ход поршня
НМТ
Vmax
Р
ис.2. Конструктивные параметры поршневой расширительной машины
1.5. Внешняя скоростная характеристика двигателя
Скоростная характеристика двигателя – это зависимости эффективной мощности двигателя, вращающего момента, расхода топлива и удельного расхода топлива от частоты вращения коленчатого вала двигателя. Зачастую наибольший интерес представляет внешняя скоростная характеристика двигателя, соответствующая его работе с наибольшей цикловой подачей топлива.
На основании большого количества экспериментальных исследований поршневых двигателей внутреннего сгорания были получены эмпирические зависимости, описывающие внешнюю скоростную характеристику двигателя [3].
Так, мощность двигателя может быть описана зависимостью
 ,
                                                            8.1
,
                                                            8.1
в которой
 – максимальная мощность двигателя (при
заданной в исходных данных частоте
вращения двигателя);
– максимальная мощность двигателя (при
заданной в исходных данных частоте
вращения двигателя);
 – мощность двигателя;
– мощность двигателя;
 – относительная частота вращения
коленвала, представляющая собой отношение
текущей частоты к частоте вращения
коленвала при максимальной мощности;
– относительная частота вращения
коленвала, представляющая собой отношение
текущей частоты к частоте вращения
коленвала при максимальной мощности;
 – текущая частота вращения коленвала
двигателя;
– текущая частота вращения коленвала
двигателя;
– частота вращения коленвала двигателя, заданная в исходных данных курсового проекта.
 – эмпирические коэффициенты.
– эмпирические коэффициенты.
Для
дизельных двигателей в [3] рекомендуется
выбирать значение коэффициента 
 .
Коэффициенты
.
Коэффициенты 
 следует получать решением системы
уравнений
следует получать решением системы
уравнений
 (для обеспечения
(для обеспечения 
 );
);
 (т.к. при
(т.к. при 
 мощность двигателя принимает максимальное
значение).
мощность двигателя принимает максимальное
значение).
При построении внешней скоростной характеристики двигателя его максимальную мощность следует определять по зависимости 5.11, расход топлива принимать прямо пропорциональным частоте вращения коленвала, а удельный расход топлива рассчитывать по зависимости 5.12.
Вращающий момент двигателя рассчитывается по формуле
 ,
                                                                     
                                           8.2
,
                                                                     
                                           8.2
где
 – текущая угловая скорость вращения
коленвала двигателя
– текущая угловая скорость вращения
коленвала двигателя
Качественный анализ внешней скоростной характеристики двигателя студенту предлагается выполнить самостоятельно.
