- •Введение
- •Глава 1. Теоретическая часть Пример термодинамического расчета идеализированного цикла поршневого двс со смешанным процессом подвода тепловой энергии к рабочему телу
- •1.1.1. Термодинамический процесс политропного сжатия рабочего тела. Уравнения обмена механической и тепловой энергией между рабочим телом и окружающей средой. Энтропия рабочего тела
- •1.1.1.1. Уравнение термодинамического политропного процесса сжатия [1]
- •1.1.1.2. Энергия в механической форме, которой обмениваются рабочее тело и окружающая среда (в нашем случае это работа изменения объёма), описывается интегральным соотношением [1]
- •1.1.1.4. Важную роль в анализе термодинамических циклов имеет энтропия рабочего тела. По определению [1]
- •1.1.2. Термодинамический изохорный процесс подвода тепловой энергии
- •1.1.3. Термодинамический изобарный процесс подвода тепловой энергии
- •1.1.4. Термодинамический процесс политропного расширения рабочего тела
- •1.1.5. Термодинамический изохорный процесс отвода тепловой энергии
- •1.1.6. Методические рекомендации по расчёту тепловой энергии и изменения энтропии в термодинамических процессах
- •1.2. Определение параметров двигателя
- •1.2.1. Результирующая работа цикла
- •1.2.2. Суммарная тепловая энергия цикла
- •1.2.3. Термический коэффициент полезного действия цикла
- •1.2.4. Среднее индикаторное давление рабочего тела и индикаторная мощность двигателя
- •1.2.5. Цикловой расход топлива, цикловой расход воздуха и коэффициент избытка воздуха
- •1.2.6. Расход топлива двигателем, мощность двигателя и его удельный расход топлива
- •1.3. Индикаторная и тепловая диаграммы цикла
- •1.4. Индикаторная диаграмма двигателя
- •1.5. Внешняя скоростная характеристика двигателя
- •2. Практическая часть. Расчёт идеализированного цикла поршневого двигателя
- •2.1. Исходные данные:
- •2.2. Определение количества рабочего тела, участвующего в осуществлении цикла
- •2.3. Определение значений параметров состояния рабочего тела в характерных точках цикла:
- •2.4. Проверка правильности вычислений параметров состояния рабочего тала в характерных точках цикла
- •2.5. Результирующая работа цикла, среднее индикаторное давление рабочего тела и индикаторная мощность двигателя
- •2.5.2. Среднее индикаторное давление рабочего тела в цикле
- •2.5.3. Индикаторная мощность двигателя
- •2.6. Расчёт тепловой энергии, которой рабочее тело обменивается с окружающей средой
- •2.6.1. Средние мольные теплоёмкости воздуха и обмен тепловой энергией между рабочим телом и окружающей средой в процессе политропного сжатия a-c
- •2.6.2. Средние мольные теплоёмкости воздуха и количество тепловой энергии, подведенной к рабочему телу из окружающей среды в изохорном термодинамическом процессе
- •2.6.3. Средние мольные теплоёмкости воздуха и количество тепловой энергии, подведенной к рабочему телу из окружающей среды в изобарном термодинамическом процессе
- •2.6.4. Средние мольные теплоёмкости воздуха и обмен тепловой энергией между рабочим телом и окружающей средой в процессе политропного расширения рабочего тела
- •2.6.5 Средние мольные теплоёмкости воздуха и количество тепловой энергии, отведенной от рабочего тела в окружающую среду в изохорном термодинамическом процессе b-a
- •2.7. Расчёт параметров двигателя
- •2.7.1. Термический коэффициент полезного действия цикла
- •2.7.2. Цикловой расход топлива, цикловой расход воздуха и коэффициент избытка воздуха
- •2.8.Изменение энтропии в термодинамических процессах цикла
- •2. 9. Построение индикаторной диаграммы цикла
- •2.9.1. Назначение и значимость индикаторной диаграммы цикла
- •2.9.2. Последовательность построения индикаторной и тепловой диаграмм цикла и результаты расчётов параметров для построения диаграмм
- •2.10. Индикаторная диаграмма двигателя
- •2.11. Внешняя скоростная характеристика двигателя
- •2.12. Выводы
- •Приложения
- •Литература
2.11. Внешняя скоростная характеристика двигателя
В этом разделе предстоит построить графические зависимости эффективной мощности двигателя, вращающего момента, расхода топлива и удельного расхода топлива от частоты вращения коленчатого вала двигателя при его работе с наибольшей цикловой подачей топлива. Такая характеристики двигателя называется внешней скоростной.
На основании большого количества экспериментальных исследований поршневых двигателей внутреннего сгорания были получены эмпирические зависимости, описывающие внешнюю скоростную характеристику двигателя [3]. По этим данным мощность двигателя представляет собой кубическую параболу, а расход топлива примерно пропорционален частоте вращения коленвала двигателя.
Такой вид зависимости мощности двигателя от частоты вращения его коленвала объясняется рядом факторов. Наибольшее влияние на форму кривой мощности оказывают коэффициент наполнения цилиндров двигателя рабочим телом и изменение параметров сгорания топлива. Эти факторы существенно изменяются по мере уменьшения времени протекания цикла (при увеличении частоты вращения коленвала двигателя).
Мощность двигателя может быть описана зависимостью
,
в которой
– максимальная мощность двигателя, значение которой уже получено в примере расчёта;
– мощность двигателя;
– относительная частота вращения
коленвала, представляющая собой отношение
текущей частоты к частоте вращения
коленвала при максимальной мощности;
– текущая частота вращения коленвала двигателя;
– частота вращения коленвала двигателя, заданная в исходных данных курсового проекта.
– эмпирические коэффициенты.
Для дизельных двигателей в [3] рекомендуется
выбирать значение коэффициента
.
Коэффициенты
и
следует получать решением системы
уравнений
(для обеспечения
при
);
(т.к. при мощность двигателя принимает максимальное значение).
При построении внешней скоростной характеристики двигателя, его максимальную мощность следует определять по приведенной зависимости, расход топлива принимать прямо пропорциональным частоте вращения коленвала, а удельный расход топлива рассчитывать по зависимости 5.12
Вращающий момент двигателя рассчитывается по формуле
,
где – текущая угловая скорость вращения коленвала двигателя
Результаты расчётов параметров двигателя, необходимых для построения его внешней скоростной характеристики приведены в таблице.
Максимальная
мощность двигателя –
т.
Внешняя
скоростная характеристика двигателя
приведена на рис.4 приложения.
2.12. Выводы
В курсовом проекте выполнены следующие расчёты и графические построения.
1) Выполнен термодинамический анализ идеализированного цикла поршневого двигателя внутреннего сгорания при смешанном подводе тепловой энергии и с политропными процессами сжатия и расширения рабочего тела.
В расчёте определены:
- параметры состояния рабочего тела в характерных точках цикла;
- параметры термодинамического цикла – среднее индикаторное давление рабочего тела, индикаторная мощность цикла, цикловой расход топлива и рабочего тела, коэффициент избытка воздуха и термический коэффициент полезного действия цикла;
- параметры необходимые для построения индикаторной диаграммы цикла;
- параметры внешней скоростной характеристики двигателя.
2) Построены:
- индикаторная диаграмма цикла;
- внешняя скоростная характеристика двигателя.
