
- •1 Элементарный электрический заряд
- •2. Закон Кулона
- •3.Электрическое поле
- •4.Линии напряженности. Поток вектора напряженности.
- •8.Потенциал.Потенциал точечного заряда, система точечных зарядов.
- •9.Потенциал диполя
- •11. Диэлектрики в электростатическом поле
- •14. Распределение зарядов в проводниках. Связь между напряжённостью поля у поверхности проводников и поверхностной плотностью заряда. Электрическая защита.
- •19. Закон Ома для неоднородного участка цепи
- •21. Принцип Паули и энергетические зоны в кристаллах. Понятие о статистике Ферми.
- •22.Квантовая теория электропроводности
- •23.Вырожденный электронный газ. Деление твердых тел на изоляторы,проводники и полупроводники
- •24.Проводимость металлов
- •25.Полупроводниковые материалы
- •26.Примесная проводимость полупроводников
- •27.Полупроводниковые приборы
- •31. Виды разрадов.
- •33.Магнитное взаимодействие полей. Закон Ампера
- •36.Циркуляция магнитной индукции
- •43 Магнитная восприимчивость
- •38. Движение заряженной частицы в электрическом и магнитном полях.
- •39.Холла эффект
- •44 Магнитная проницаемость
- •45 Диамагнетизм. Парамагнетизм
- •46. Ферромагнетизм. Гистерезис. Спин электрона. Опыты Энштейна и Гааза как доказательство спиновой природы ферромагнетиков.
- •47. Доменная структура ферромагнетиков. Точка Кюри.
- •48.Понятие о переменном токе.
- •53. Скорость распространения электромагнитных волн в средах.
- •54. Вектор Умова-Пойтинга. Энергия электромагнитных волн.
- •55. Опыты Герца
3.Электрическое поле
Электрическое поле — одна из составляющих электромагнитного поля; особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.
Для количественного определения электрического поля вводится силовая характеристика — напряжённость электрического поля — векторная физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.
В классической физике, применимой при рассмотрении крупномасштабных (больше размера атома) взаимодействий, электрическое поле рассматривается как одна из составляющих единого электромагнитного поля и проявление электромагнитного взаимодействия. В квантовой электродинамике — это компонент электрослабого взаимодействия.
В классической физике система уравнений Максвелла описывает взаимодействие электрического поля, магнитного поля и воздействие зарядов на эту систему полей.
Сила Лоренца описывает воздействие электромагнитного поля на частицу.
Эффект поля заключается в том, что при воздействии электрического поля на поверхность электропроводящей среды в её приповерхностном слое изменяется концентрация свободных носителей заряда. Этот эффект лежит в основе работы полевых транзисторов.
Основным действием электрического поля является силовое воздействие на неподвижные (относительно наблюдателя) электрически заряженные тела или частицы. Если заряженное тело фиксировано в пространстве, то оно под действием силы не ускоряется. На движущиеся заряды силовое воздействие оказывает и магнитное поле (вторая составляющая силы Лоренца).Содержание
Энергия электрического поля
Электрическое поле обладает энергией. Плотность этой энергии определяется величиной поля и может быть найдена по формуле
где E — напряжённость электрического поля, D — индукция электрического пол
Напряжённость электрического поля
Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный[1] пробный заряд, помещенный в данную точку поля, к величине этого заряда :
Из этого определения
видно, почему напряженность электрического
поля иногда называется силовой
характеристикой электрического поля
(действительно, всё отличие от вектора
силы, действующей на заряженную частицу,
только в постоянном[2] м
ножителе).
В каждой точке пространства в данный момент времени существует свое значение вектора (вообще говоря - разное[3] в разных точках пространства), таким образом, - это векторное поле. Формально это выражается в записи представляющей напряженность электрического поля как функцию пространственных координат (и времени, т.к. может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле[4], и законы, которым оно подчиняется, есть предмет электродинамики.
Напряжённость электрического поля в СИ измеряется в вольтах на метр [В/м] или в ньютонах на кулон.