Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика шпора.doc
Скачиваний:
7
Добавлен:
01.03.2025
Размер:
2.02 Mб
Скачать

33.Магнитное взаимодействие полей. Закон Ампера

Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества (гипотеза АмпераМагнитное поле токов принципиально отличается от электрического поля. Магнитное поле, в отличие от электрического, оказывает силовое действие только на движущиеся заряды (токи). Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности  электрического поля. Такой характеристикой является вектор магнитной индукции Вектор магнитной индукции определяет силы, действующие на токи или движущиеся заряды в магнитном поле. За положительное направление векторапринимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно устанавливающейся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства определить направление вектора Такое исследование позволяет представить пространственную структуру магнитного поля. Аналогично силовым линиям в электростатике можно построить линии магнитной индукции, в каждой точке которых вектор направлен по касательной. Пример линий магнитной индукции полей постоянного магнита и катушки с током приведен на рис. 4.16.1.

Обратите внимание на аналогию магнитных полей постоянного магнита и катушки с током. Линии магнитной индукции всегда замкнуты, они нигде не обрываются. Это означает, что магнитное поле не имеет источников – магнитных зарядов. Силовые поля, обладающие этим свойством, называются вихревыми. Картину магнитной индукции можно наблюдать с помощью мелких железных опилок, которые в магнитном поле намагничиваются и, подобно маленьким магнитным стрелкам, ориентируются вдоль линий индукции. Для того, чтобы количественно описать магнитное поле, нужно указать способ определения не только направления вектора но и его модуля. Проще всего это сделать, внося в исследуемое магнитное поле проводник с током и измеряя силу, действующую на отдельный прямолинейный участок этого проводника. Этот участок проводника должен иметь длину Δl, достаточно малую по сравнению с размерами областей неоднородности магнитного поля. Как показали опыты Ампера, сила, действующая на участок проводника, пропорциональна силе тока I, длине Δl этого участка и синусу угла α между направлениями тока и вектора магнитной индукции:

F ~ IΔl sin α.

  Эта сила называется силой Ампера. Она достигает максимального по модулю значения Fmax, когда проводник с током ориентирован перпендикулярно линиям магнитной индукции. Модуль вектора определяется следующим образом: Модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока I в проводнике и его длине Δl:

  В общем случае сила Ампера выражается соотношением:

F = IBΔlsin α.

34. Магни́тная инду́кция— векторная величина, показывающая, с какой силой F магнитное поле

B⃗ действует на заряд q, движущийся со скоростью v⃗. Где:

B⃗ — это вектор силы Лоренца

F, действующей на заряд q, который движется со скоростью

v⃗.

F=q[v⃗×B⃗]=qvBsinα.

Магнитная индукция является основной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля.[1]

За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно устанавливающейся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства определить направление вектора. Такое исследование позволяет представить пространственную структуру магнитного поля. Аналогично силовым линиям в электростатике можно построить линии магнитной индукции, в каждой точке которых вектор направлен по касательной.

в системе СИ (система единиц) — в теслах (Тл), 1 Тл = 104 Гс. Магнитометры, применяемые для измерения магнитной индукции, называют тесламетрами.

Магнитная индукция В - это векторная физическая величина, являющаяся силовой характеристикой магнитного поля в точке. Она равна отношению максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на ее площадь.

Закон Био́—Савара—Лапла́са— физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током. Был установлен экспериментально в 1820 году Био и Саваром и сформулирован в общем виде Лапласом. Лаплас показал также, что с помощью этого закона можно вычислить магнитное поле движущегося точечного заряда (считая движение одной заряженной частицы током).

Закон Био—Савара—Лапласа играет в магнитостатике ту же роль, что и закон Кулона в электростатике. Закон Био—Савара—Лапласа можно считать главным законом магнитостатики, получая из него остальные ее результаты.

где I ток в контуре, гамма контур, по которому идет интегрирование r0 произвольная точка Возьмём элементарный участок проводника с током dl, он будет создавать в некоторой точке индукцию магнитного поля dB. dl это элементарный вектор направление, которого совпадает с направлением тока в контуре. r радиус вектор, направленный от dl к точке наблюдения. А вектор dB направлен перпендикулярно элементарному участку проводника dl и одновременно перпендикулярно радиус вектору r.

35. Магнитный момент является векторной величиной, направленной по нормали к контуру. Из двух возможных направлений нормали выбирается то, которое связано с направлением тока в контуре правилом правого винта [{рис. 211). Вращение винта с правой нарезкой в направлении, совпадающем с направлением тока в контуре, вызывает продольное перемещение винта в направлении n. Выбранная таким образом нормаль называется положительной. Направление вектора pm принимается совпадающим с направлением положительной нормали n.

Единица магнитной индукции в СИ называется тесла (Тл) в честь сербского ученого Николы Теслы (1856—1943). Один тесла равен магнитной индукции однородного магнитного поля, в котором на плоский контур с током, имеющий магнитный момент один ампер-метр в квадрате, действует максимальный вращающий момент, равный одному ньютон-метру.

Единицей магнитного момента является ампер-метр в квадрате (А•м2). Чтобы дать представление об этой единице, укажем, что при силе тока 1 А магнитным моментом, равным 1 А•м2, обладает круговой контур радиуса 0,564 м (p•0,5642=1) либо квадратный контур со стороной квадрата, равной 1 м. При силе тока 10 А магнитным моментом 1 А•м2 обладает круговой контур радиуса 0,178 м (p•0,1782=0,1) и т. д.

Электрон, движущийся с большой скоростью по круговой орбите, эквивалентен круговому току, сила которого равна произведению заряда электрона е на частоту n вращения электрона по орбите: I=en. Если радиус орбиты равен r, а скорость электрона — v, то n=vl2pr и, следовательно, I=ev/2pr. Магнитный момент, соответствующий этому току,