
- •1 Билет. Понятие множества, элемента множества.
- •2 Билет. Конечные и бесконечные множества.
- •3 Билет. Свойства операций объединения и пересечения множеств.
- •4 Билет. Прямое произведение множеств.
- •5 Билет. Бинарные отношения.
- •6 Билет. Функция как закон соответствия между множествами
- •7. Класс элементарных функций
- •8 Билет. Суперпозиция функций.
- •9. Последовательность - функция натурального аргумента.
- •10. Бесконечно малые последовательности
- •11 Билет. Определение бесконечно малой последовательности на языке «e» - «n»
- •12 Билет. Теоремы о свойствах бесконечно малых последовательностей
- •Билет 13. Бесконечно большие последовательности
- •15 Билет. Предел последовательности.
- •16 Вопрос. Определение предела последовательности на языке «e» - «n»
- •17 Вопрос. Свойства последовательностей, имеющих предел.
- •18 Вопрос. Геометрический смысл предела последовательности.
- •19 Вопрос Теорема о единственности предела последовательности.
- •20 Билет. Теорема о связи последовательности, имеющей предел, её предела и бесконечно малой.
- •21 Билет. Теоремы об арифметических свойствах пределов последовательности:
- •22.Признаки существования предела последовательности.
- •23. Замечательный предел типа «е».
- •24. Предел функции в точке.
- •25 Билет. Определение предела функции на языке языке «ε» — «δ» (предел функции по Коши)
- •26 Билет. Геометрический смысл предела функции в точке.
- •27 Билет. Бесконечно малые и бесконечно большие функции.
- •28 Билет. Свойства функций, имеющих предел.
- •29 Билет. Односторонние пределы функции в точке.
- •30 Билет. Предел функции на бесконечности.
- •31 Билет. Теоремы об арифметических свойствах пределов.
- •32. Сравнение бесконечно малых функций
- •33.«Замечательный» предел - предел отношения синуса бесконечно малого угла к этому углу.
- •34. Определение непрерывности функции в точке.
- •35.Непрерывность функции на отрезке.
- •36 Билет. Определение непрерывности функции через приращения аргумента и функции.
- •37 Билет. Теоремы о свойствах непрерывных функций.
- •38 Билет. Непрерывность основных элементарных функций в каждой точке, где они определены.
- •39 Билет. Первая и вторая теоремы Больцано-Коши.
- •40 Билет. Разрывные функции. Типы разрывов.
- •41 Билет. Определение производной.
- •42 Билет.Приращение функции и вычисление средней скорости изменения функции.
- •43 Билет.Геометрический смысл производной.
- •44 Билет. Связь между непрерывностью и существованием производной.
- •45) Правила вычисления производной от суммы, произведения и частного функций.
- •46 Билет. Производная сложной функции
- •47 Билет. Нахождение производных от элементарных функций
- •48 Билет. Бином Ньютона. Формула Ньютона-Лейбница.
- •49 Билет.Теорема Лагранжа о конечном приращении функции на отрезке.
- •50 Билет. Правило Лопиталя, раскрытия неопределенностей.
- •51 Билет. Понятие о дифференциале функции.
- •52 Билет.Геометрический смысл дифференциала функции.
- •53 Билет. Связь дифференциала и производной функции.
- •54 Билет.Свойства дифференциала.
- •55 Билет.Таблица дифференциалов.
- •60 Билет. Метод интегрирования «по частям» для вычисления неопределенного интеграла.
- •61 Билет. Интегралы, не выражающиеся через элементарные функции.
- •62 Билет. Задача нахождения площади криволинейной трапеции.
- •63 Определенный интеграл как предел интегральных сумм.
- •64 Билет. Производная определенного интеграла по верхнему пределу.
- •64 Билет.Теорема о производной определенного интеграла по переменному верхнему пределу
- •69 Билет. Определение несобственных интегралов с бесконечными пределами.
- •70 Билет. Несобственные интегралы от разрывных функций.
- •71 Билет. Интеграл вероятностей (Пуассона).
69 Билет. Определение несобственных интегралов с бесконечными пределами.
Определённый интеграл называется несобственным, если выполняется, по крайней мере, одно из следующих условий: Предел a или b (или оба предела) являются бесконечными; Функция f(x) имеет одну или несколько точек разрыва внутри отрезка [a, b]. Иногда такой несобственный интеграл еще называют несобственным интегралом первого рода. Несобственный интеграл может быть отрицательным. Несобственный интеграл выражает площадь бесконечно длинной криволинейной трапеции.
Если интеграл, определенный от а до b при b —> +oo имеет конечный предел, то этот предел называется несобственным интегралом функции f(x) от а до бесконечности .
Если интеграл при b —> +00 имеет бесконечный предел или вовсе не имеет предела, то говорят, что несобственный интеграл расходится. Если интеграл при b —> +00 имеет конечный предел, то говорят, что несобственный интеграл сходится.
70 Билет. Несобственные интегралы от разрывных функций.
Рассмотрим
случай, когда функция
непрерывна
на промежутке
,
а в точке
терпит
разрыв второго рода. В этом случае
введение определенного интеграла на
отрезке
как
предела интегральной суммы также
невозможно. Необходимо искать площадь
трапеции, левый конец основания которой
приближается к точке
.
Определение.
Если существует конечный предел
,
то этот предел называется несобственным
интегралом от разрывной функции
и
обозначается
.
Следовательно, вычисление несобственного интеграла от разрывной функции связано с нахождением предела:
Так же как и в предыдущем параграфе, если этот предел существует, то интеграл называется сходящимся, если не существует или равен бесконечности, то – расходящимся.
С геометрической точки зрения несобственный интеграл от разрывной функции равен площади криволинейной трапеции, у которой в какой-то точке высота равна бесконечности.
71 Билет. Интеграл вероятностей (Пуассона).
Интеграл Пуассона – это интеграл вида
,
где r и j — полярные координаты, q — параметр, меняющийся на отрезке [0; 2p]; Интеграл Пуассона выражает значения функции u (r, j), гармонической внутри круга радиуса R, через её значения f(q), заданные на границе этого круга. Функция u (r, j) является решением задачи Дирихле для круга. Интеграл Пуассона был впервые рассмотрен Пуассоном (1823). Строгая теория этого интеграла была создана Г. Шварцем (1869).
2) Интеграл
;
встречается в теории вероятностей и некоторых задачах математической физики. Пуассон предложил весьма простой приём для вычисления этого интеграла. Впервые же этот интеграл был вычислен (1729) Л. Эйлером, поэтому называется также интегралом Эйлера — Пуассона.