
- •1 Билет. Понятие множества, элемента множества.
- •2 Билет. Конечные и бесконечные множества.
- •3 Билет. Свойства операций объединения и пересечения множеств.
- •4 Билет. Прямое произведение множеств.
- •5 Билет. Бинарные отношения.
- •6 Билет. Функция как закон соответствия между множествами
- •7. Класс элементарных функций
- •8 Билет. Суперпозиция функций.
- •9. Последовательность - функция натурального аргумента.
- •10. Бесконечно малые последовательности
- •11 Билет. Определение бесконечно малой последовательности на языке «e» - «n»
- •12 Билет. Теоремы о свойствах бесконечно малых последовательностей
- •Билет 13. Бесконечно большие последовательности
- •15 Билет. Предел последовательности.
- •16 Вопрос. Определение предела последовательности на языке «e» - «n»
- •17 Вопрос. Свойства последовательностей, имеющих предел.
- •18 Вопрос. Геометрический смысл предела последовательности.
- •19 Вопрос Теорема о единственности предела последовательности.
- •20 Билет. Теорема о связи последовательности, имеющей предел, её предела и бесконечно малой.
- •21 Билет. Теоремы об арифметических свойствах пределов последовательности:
- •22.Признаки существования предела последовательности.
- •23. Замечательный предел типа «е».
- •24. Предел функции в точке.
- •25 Билет. Определение предела функции на языке языке «ε» — «δ» (предел функции по Коши)
- •26 Билет. Геометрический смысл предела функции в точке.
- •27 Билет. Бесконечно малые и бесконечно большие функции.
- •28 Билет. Свойства функций, имеющих предел.
- •29 Билет. Односторонние пределы функции в точке.
- •30 Билет. Предел функции на бесконечности.
- •31 Билет. Теоремы об арифметических свойствах пределов.
- •32. Сравнение бесконечно малых функций
- •33.«Замечательный» предел - предел отношения синуса бесконечно малого угла к этому углу.
- •34. Определение непрерывности функции в точке.
- •35.Непрерывность функции на отрезке.
- •36 Билет. Определение непрерывности функции через приращения аргумента и функции.
- •37 Билет. Теоремы о свойствах непрерывных функций.
- •38 Билет. Непрерывность основных элементарных функций в каждой точке, где они определены.
- •39 Билет. Первая и вторая теоремы Больцано-Коши.
- •40 Билет. Разрывные функции. Типы разрывов.
- •41 Билет. Определение производной.
- •42 Билет.Приращение функции и вычисление средней скорости изменения функции.
- •43 Билет.Геометрический смысл производной.
- •44 Билет. Связь между непрерывностью и существованием производной.
- •45) Правила вычисления производной от суммы, произведения и частного функций.
- •46 Билет. Производная сложной функции
- •47 Билет. Нахождение производных от элементарных функций
- •48 Билет. Бином Ньютона. Формула Ньютона-Лейбница.
- •49 Билет.Теорема Лагранжа о конечном приращении функции на отрезке.
- •50 Билет. Правило Лопиталя, раскрытия неопределенностей.
- •51 Билет. Понятие о дифференциале функции.
- •52 Билет.Геометрический смысл дифференциала функции.
- •53 Билет. Связь дифференциала и производной функции.
- •54 Билет.Свойства дифференциала.
- •55 Билет.Таблица дифференциалов.
- •60 Билет. Метод интегрирования «по частям» для вычисления неопределенного интеграла.
- •61 Билет. Интегралы, не выражающиеся через элементарные функции.
- •62 Билет. Задача нахождения площади криволинейной трапеции.
- •63 Определенный интеграл как предел интегральных сумм.
- •64 Билет. Производная определенного интеграла по верхнему пределу.
- •64 Билет.Теорема о производной определенного интеграла по переменному верхнему пределу
- •69 Билет. Определение несобственных интегралов с бесконечными пределами.
- •70 Билет. Несобственные интегралы от разрывных функций.
- •71 Билет. Интеграл вероятностей (Пуассона).
45) Правила вычисления производной от суммы, произведения и частного функций.
|
46 Билет. Производная сложной функции
Производная от производной первого порядка называется производной второго порядка. Производная от производной второго порядка называется производной третьего порядка. Вообще, производной n-го порядка называется производная от производной n -1-го порядка. По определению сама функция считается производной нулевого порядка от самой себя.
;
;
... ,
.
.
Относительно этих производных надо знать формулу Лейбница
.
Обратные тригонометрические функции.
Рассмотрим
функцию y = arcsin x.
На отрезке
обратной
к ней функцией будет x = sin y.
Продифференцируем эту функцию по x,
считая y
функцией от x:
или
(на
указанном отрезке).
|
|
|
|
Но
(еще одно следствие замечательного
предела
).
Если a > 0, a ≠ 1,
то
При
x > 0
для любого
Таким образом,
47 Билет. Нахождение производных от элементарных функций
Элементарные функции — функции, которые можно получить из основных элементарных функций (полиномиальная функция, рациональная, степенная, показательная и логарифмическая, тригонометрические и обратные тригонометрические) с помощью конечного числа арифметических действий и композиций. Каждую элементарную функцию можно задать формулой, т.е. набором конечного числа символов, отвечающих перечисленным операциям.
Производные и интегралы элементарных функций
|