Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
mat_otvety_1-71.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
812.51 Кб
Скачать

36 Билет. Определение непрерывности функции через приращения аргумента и функции.

Пусть функция у=ƒ(х) определена в некотором интервале (а;b). Возьмем произвольную точку хоє(а;b). Для любого хє(а;b) разность х-хо называется приращением аргумента х в точке х0 и обозначается ∆х («дельта х»): ∆х=х-x0. Отсюда х=х0+∆х.

Разность соответствующих значений функций ƒ(х)-ƒ(х0) называется приращением функции ƒ(х) в точке х0 и обозначается ∆у (или ∆ƒ или ∆ƒ(х0)): ∆у=ƒ(х)-ƒ(х0) или ∆у=ƒ(х0+∆х)-ƒ(х0)

Очевидно, приращения ∆х и ∆у могут быть как положительными, так и отрицательными числами.

Запишем равенство (19.1) в новых обозначениях. Так как условия х→х0 и х-х0→0 одинаковы, то равенство (19.1) принимает вид:

Полученное равенство (19.3) является еще одним определением непре-рывности функции в точке: функция у=ƒ(х) называется непрерывной в точке х0, если она определена в точке х0 и ее окрестности и выполняется равенство (19.3), т. е. бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

37 Билет. Теоремы о свойствах непрерывных функций.

38 Билет. Непрерывность основных элементарных функций в каждой точке, где они определены.

Можно доказать, что все основные элементарные функции непрерывны при всех значениях х, для которых они определены.

Как известно, элементарной называется такая функция, которую можно задать одной формулой, содержащей конечное число арифметических действий и суперпозиций (операции взятия функции от функции) основных элементарных функций. Поэтому из приведенных выше теорем вытекает: всякая элементарная функция непрерывна в каждой точке, в которой она определена.

Теорема 19.3 . Если функция у=ƒ(х) непрерывна и строго монотонна на [a;b] оси (Oх, то обратная функция у=φ(х) также непрерывна и монотонна на соответствующем отрезке [c;d] оси Оу (без доказательства).

Так, например, функция tgx=sinx/cosx . в силу теоремы 19.1, есть функция непрерывная для всех значений х, кроме тех, для которых cosх=0, т. е. кроме значений х=π/2+πn, nєZ.

Функции arcsinx, arctgx, arccosx, arcctgx, в силу теоремы 19.3, непрерывны при всех значениях х, при которых эти функции определены.

39 Билет. Первая и вторая теоремы Больцано-Коши.

Теорема (первая теорема Больцано-Коши) Если функция непрерывна на I и в 2 его точках a и bпринимает значения разных знаков, то по крайней мере в одной точке c между a и b функция обращается в нуль, т.е. f(c)=0

Геометрический смысл: График непрерывной на промежутке и принимающей в двух точках этого промежутка значения разных знаков пересекает ось абсцисс по крайней мере в одной точке.

f(a)<0,f(b)>0,f(c)=0

В теореме лишь утверждается существование нуля функции такой точки c, гдеf(c)=0, но не показывает метода нахождения точки.

Теорема (вторая теорема Больцано - Коши) Если f непрерывна на I и в двух его точках a и bf(a)=A>B=f(b), то для всякой точки C∈[B,A] между точками a и b найдется хотя бы одна точка c, чтоf(c)=C.

Геометрический смысл этой теоремы: всякая прямаяy=C, где B<C<A, пересечет график функции f по крайней мере в одной точке.

Доказательство: Основано на первой теореме Больцано-Коши.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]