- •1 Билет. Понятие множества, элемента множества.
- •2 Билет. Конечные и бесконечные множества.
- •3 Билет. Свойства операций объединения и пересечения множеств.
- •4 Билет. Прямое произведение множеств.
- •5 Билет. Бинарные отношения.
- •6 Билет. Функция как закон соответствия между множествами
- •7. Класс элементарных функций
- •8 Билет. Суперпозиция функций.
- •9. Последовательность - функция натурального аргумента.
- •10. Бесконечно малые последовательности
- •11 Билет. Определение бесконечно малой последовательности на языке «e» - «n»
- •12 Билет. Теоремы о свойствах бесконечно малых последовательностей
- •Билет 13. Бесконечно большие последовательности
- •15 Билет. Предел последовательности.
- •16 Вопрос. Определение предела последовательности на языке «e» - «n»
- •17 Вопрос. Свойства последовательностей, имеющих предел.
- •18 Вопрос. Геометрический смысл предела последовательности.
- •19 Вопрос Теорема о единственности предела последовательности.
- •20 Билет. Теорема о связи последовательности, имеющей предел, её предела и бесконечно малой.
- •21 Билет. Теоремы об арифметических свойствах пределов последовательности:
- •22.Признаки существования предела последовательности.
- •23. Замечательный предел типа «е».
- •24. Предел функции в точке.
- •25 Билет. Определение предела функции на языке языке «ε» — «δ» (предел функции по Коши)
- •26 Билет. Геометрический смысл предела функции в точке.
- •27 Билет. Бесконечно малые и бесконечно большие функции.
- •28 Билет. Свойства функций, имеющих предел.
- •29 Билет. Односторонние пределы функции в точке.
- •30 Билет. Предел функции на бесконечности.
- •31 Билет. Теоремы об арифметических свойствах пределов.
- •32. Сравнение бесконечно малых функций
- •33.«Замечательный» предел - предел отношения синуса бесконечно малого угла к этому углу.
- •34. Определение непрерывности функции в точке.
- •35.Непрерывность функции на отрезке.
- •36 Билет. Определение непрерывности функции через приращения аргумента и функции.
- •37 Билет. Теоремы о свойствах непрерывных функций.
- •38 Билет. Непрерывность основных элементарных функций в каждой точке, где они определены.
- •39 Билет. Первая и вторая теоремы Больцано-Коши.
- •40 Билет. Разрывные функции. Типы разрывов.
- •41 Билет. Определение производной.
- •42 Билет.Приращение функции и вычисление средней скорости изменения функции.
- •43 Билет.Геометрический смысл производной.
- •44 Билет. Связь между непрерывностью и существованием производной.
- •45) Правила вычисления производной от суммы, произведения и частного функций.
- •46 Билет. Производная сложной функции
- •47 Билет. Нахождение производных от элементарных функций
- •48 Билет. Бином Ньютона. Формула Ньютона-Лейбница.
- •49 Билет.Теорема Лагранжа о конечном приращении функции на отрезке.
- •50 Билет. Правило Лопиталя, раскрытия неопределенностей.
- •51 Билет. Понятие о дифференциале функции.
- •52 Билет.Геометрический смысл дифференциала функции.
- •53 Билет. Связь дифференциала и производной функции.
- •54 Билет.Свойства дифференциала.
- •55 Билет.Таблица дифференциалов.
- •60 Билет. Метод интегрирования «по частям» для вычисления неопределенного интеграла.
- •61 Билет. Интегралы, не выражающиеся через элементарные функции.
- •62 Билет. Задача нахождения площади криволинейной трапеции.
- •63 Определенный интеграл как предел интегральных сумм.
- •64 Билет. Производная определенного интеграла по верхнему пределу.
- •64 Билет.Теорема о производной определенного интеграла по переменному верхнему пределу
- •69 Билет. Определение несобственных интегралов с бесконечными пределами.
- •70 Билет. Несобственные интегралы от разрывных функций.
- •71 Билет. Интеграл вероятностей (Пуассона).
36 Билет. Определение непрерывности функции через приращения аргумента и функции.
Пусть функция у=ƒ(х) определена в некотором интервале (а;b). Возьмем произвольную точку хоє(а;b). Для любого хє(а;b) разность х-хо называется приращением аргумента х в точке х0 и обозначается ∆х («дельта х»): ∆х=х-x0. Отсюда х=х0+∆х.
Разность соответствующих значений функций ƒ(х)-ƒ(х0) называется приращением функции ƒ(х) в точке х0 и обозначается ∆у (или ∆ƒ или ∆ƒ(х0)): ∆у=ƒ(х)-ƒ(х0) или ∆у=ƒ(х0+∆х)-ƒ(х0)
Очевидно, приращения ∆х и ∆у могут быть как положительными, так и отрицательными числами.
Запишем
равенство (19.1) в новых обозначениях. Так
как условия х→х0 и х-х0→0 одинаковы, то
равенство (19.1) принимает вид:
Полученное равенство (19.3) является еще одним определением непре-рывности функции в точке: функция у=ƒ(х) называется непрерывной в точке х0, если она определена в точке х0 и ее окрестности и выполняется равенство (19.3), т. е. бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.
37 Билет. Теоремы о свойствах непрерывных функций.
38 Билет. Непрерывность основных элементарных функций в каждой точке, где они определены.
Можно доказать, что все основные элементарные функции непрерывны при всех значениях х, для которых они определены.
Как известно, элементарной называется такая функция, которую можно задать одной формулой, содержащей конечное число арифметических действий и суперпозиций (операции взятия функции от функции) основных элементарных функций. Поэтому из приведенных выше теорем вытекает: всякая элементарная функция непрерывна в каждой точке, в которой она определена.
Теорема 19.3 . Если функция у=ƒ(х) непрерывна и строго монотонна на [a;b] оси (Oх, то обратная функция у=φ(х) также непрерывна и монотонна на соответствующем отрезке [c;d] оси Оу (без доказательства).
Так, например, функция tgx=sinx/cosx . в силу теоремы 19.1, есть функция непрерывная для всех значений х, кроме тех, для которых cosх=0, т. е. кроме значений х=π/2+πn, nєZ.
Функции arcsinx, arctgx, arccosx, arcctgx, в силу теоремы 19.3, непрерывны при всех значениях х, при которых эти функции определены.
39 Билет. Первая и вторая теоремы Больцано-Коши.
Теорема (первая теорема Больцано-Коши) Если функция непрерывна на I и в 2 его точках a и bпринимает значения разных знаков, то по крайней мере в одной точке c между a и b функция обращается в нуль, т.е. f(c)=0
Геометрический смысл: График непрерывной на промежутке и принимающей в двух точках этого промежутка значения разных знаков пересекает ось абсцисс по крайней мере в одной точке.
f(a)<0,f(b)>0,f(c)=0
В теореме лишь утверждается существование нуля функции такой точки c, гдеf(c)=0, но не показывает метода нахождения точки.
Теорема (вторая теорема Больцано - Коши) Если f непрерывна на I и в двух его точках a и bf(a)=A>B=f(b), то для всякой точки C∈[B,A] между точками a и b найдется хотя бы одна точка c, чтоf(c)=C.
Геометрический смысл этой теоремы: всякая прямаяy=C, где B<C<A, пересечет график функции f по крайней мере в одной точке.
Доказательство: Основано на первой теореме Больцано-Коши.
