
- •© Зимон а.Д., , Евтушенко а.М., Крашенинникова и.Г. Учебно-практическое пособие – м., мгуту, 2004.
- •Часть II 5
- •Раздел первый Часть II
- •Основные закономерности адсорбции
- •4.1. Адсорбция как поверхностное явление
- •4.2. Фундаментальное уравнение адсорбции Гиббса
- •4.3. Причины и механизм адсорбции
- •4.4. Уравнения Генри, Фрейндлиха, Ленгмюра
- •Адсорбция на границе жидкость — газ
- •5.1. Особенности адсорбции на границе жидкости с газовой средой
- •5.2. Адсорбция пав
- •5.3. Зависимость адсорбции от концентрации адсорбтива
- •5.4. Предельная адсорбция
- •5.5. Гидрофобные взаимодействия
- •5.6. Методы определения поверхностного натяжения
- •Адсорбция на твердых поверхностях
- •6.1. Особенности адсорбции на поверхности твердых тел
- •6.2 Адсорбция газов
- •6.3. Адсорбция жидкости
- •6.4. Адсорбция ионов
- •6.5. Ионообменная адсорбция
- •Иониты, применяемые в пищевой промышленности
- •6.6. Применение адсорбционных процессов
- •Двойной электрический слой и электрокинетические явления
- •7.1. Поверхностная энергия и заряд поверхности
- •7.2. Двойной электрический слой
- •7.3. Электрокинетические явления
- •Применение электрофореза и электроосмоcа
- •7.4. Электрофоретическая подвижность
- •Тесты для самостоятельной проработки
- •Ответы на тесты для самостоятельной проработки
- •Вопросы для самоконтроля
- •Список литературы
- •Физическая и коллоидная химия. Коллоидная химия Раздел первый
- •Часть II.
- •Учебно-практическое пособие
6.5. Ионообменная адсорбция
Помимо адсорбции ионов возможен обмен между ионами раствора и твердой поверхности. Ионный обмен связан с адсорбцией ионов из раствора электролита и десорбции ионов из твердой поверхности в раствор. Поэтому ионный обмен называют ионообменной адсорбцией.
Ионный обмен – это обратимый процесс эквивалентного (стехиометрического) обмена ионами между раствором электролитов и твердым телом (ионитом). Иониты, которые еще называют ионо-обменниками или ионообменными сорбентами, представляют собой вещества, способные к ионному обмену при контакте с растворами электролитов. Ионит имеет две группы ионов (рис. 6.7), одна из них содержится в фазе ионита, а другая способна диссоциировать и является электролитом.
Рис. 6.7. Модель матрицы катионита:
1 — каркас; 2 — фиксированный анион;
3 — подвижный катион, способный к ионному обмену
По знаку обмениваемых ионов различают катиониты и аниониты. Они состоят из каркаса (матрицы), который обладает определенным зарядом, и ионом, способным к обмену. Катионит имеет закрепленные анионогенные группы и катионы, способные к обмену с окружающей средой. Если обозначить каркас катионита через [...], то типичная реакция катионного обмена выглядит следующим образом:
Кат+1 [...]– + Кат+2→ Кат+2 [...]– + Кат+1 . (6.20)
Анионы содержат закрепленные катионогенные группы и способные к обмену анионы. Реакция анионного обмена происходит по схеме
[...]+ Ан–1 + Ан–2 → [...]+ Ан–2 + Ан–1 . (6.21)
Катиониты содержат катионы Кат+, которые способны обмениваться на такие ионы раствора, как H+, Na+, K+, Ca2+, Mg2+ и др. У анионов обменными являются анионы Ан–: ОН–, С1–, SO2-4 и др., а каркас несет положительный заряд. Существуют еще амфолиты, которые в зависимости от условий способны проявлять катионообменные и анионообменные свойства.
Процесс ионного обмена включает следующие последовательные стадии: 1) движение адсорбированного иона к поверхности зерна адсорбента; 2) перемещение адсорбированного иона внутри зерна адсорбента; 3) собственно ионный обмен; 4) перемещение вытесняемого иона внутри зерна адсорбента; 5) переход вытесняемого иона от поверхности зерна адсорбента в раствор. Все стадии, кроме собственно химической реакции обмена, носят диффузионный характер, который и определяет суммарную скорость ионного обмена. Расчеты диффузионных стадий базируются на законах Фика (см. параграф 9.3). Коэффициенты диффузии определяют экспериментально; их значения для внешней диффузии составляют 10–9м2 ∙ с–1, а для внутренней (на второй и четвертой стадиях ионного обмена) – от 10–10 до 10–15 м2 ∙ с–1.
Ионный обмен имеет некоторое сходство с адсорбцией – на поверхности твердого тела происходит концентрирование ионов растворенного вещества. В то же время ионный обмен представляет собой стехиометрическое замещение – в обмен на адсорбцию ионит отдает в раствор эквивалентное количество другого иона с зарядом того же знака. Подобный процесс в случае адсорбции отсутствует. На практике, однако, трудно провести грань между процессами адсорбции и замещения, особенно учитывая, что адсорбенты могут быть одновременно и ионитами.
Различают природные и синтетические иониты. К природным относятся алюмосиликатные материалы – монтмориллонит, гидрослюда, цеолиты и др., а к синтетическим – ионообменные смолы. сульфированные угли (сульфоуголь), ионообменные целлюлозы, содержащие следующие функциональные группы: –SO3H, –COOН, –РО(ОН)2, –CH2OH.
Ионообменные свойства ионитов характеризуются некоторыми особенностями. Oни селективны, т.е. проявляются для определенных ионов и зависят от ряда условий, в том числе от рН среды. Ионообменная способность ионитов небезгранична. Она характеризуется емкостью, показывающей, какое число г-экв ионов может адсорбироваться на 1 кг сухого ионита. В связи со специфичностью свойств ионитов их ионообменную способность (емкость) определяют по отношению к 0,1 н раствору NaOH (для катионита) или 0,1 н раствора НСl (для анионита) Поэтому емкость ионита является условной величиной. Именно эта величина приведена в табл. 6.2.
Иониты находят широкое применение в различных отраслях. Например, иониты в аналитической химии позволяют концентрировать мельчайшие количества определяемых веществ, оценивать состав и концентрацию различных ионов, удалять мешающие обмену ионы, разделять количественно компоненты сложных смесей.
Ионообменная адсорбция применяется для очистки от примесей, умягчения и обессоливания воды в очистительных сооружениях (в том числе и городских и в приборах индивидуального пользования), в атомной энергетике, в электронной и других отраслях промышленности, для гидрометаллургической переработки бедных руд различных цветных металлов, при получении лекарственных препаратов, для очистки сточных вод и других целей. Причем часто осуществляется комплексная очистка с помощью анионитов и катионитов.
Т а б л и ц а 6.2