
- •1 Основные величины, характеризующие синусоидальную функцию времени. Что такое период и частота?
- •2. Действующее значение синусоидального тока.
- •3. Три формы представления синусоидальных величин.
- •4. Представление синусоидальных величин комплексными числами. Комплексная амплитуда и комплекс действующего значении.
- •5 . Зависимость между током и напряжением для резистивного элемента. Закон Ома в комплексной форме. Векторная диаграмма. Фазовый сдвиг между током и напряжением.
- •6 .Зависимость между током и напряжением для индуктивного элемента. Закон Ома в комплексной форме. Векторная диаграмма. Фазовый сдвиг между током и напряжением.
- •7. Зависимость между током и напряжением для емкостного элемента. Закон Ома в комплексной форме. Векторная диаграмма. Фазовый сдвиг между током и напряжением.
- •8. Основы символического метода расчета цепей переменного тока. Комплексное сопротивление и комплексная проводимость.
- •9. Активная мощность в цепи переменного тока.
- •10. Реактивная мощность индуктивности и емкости.
- •11. Полная мощность.
- •12. Полная мощность в комплексной форме.
- •13.Треугольник сопротивлений и мощностей.
- •14. 1 И 2 законы Кирхгофа в комплексной форме.
- •15. Алгоритм расчета цепи переменного тока с использованием законов Кирхгофа. Приведите пример расчета разветвленной эц.
- •16. Векторные диаграммы.
- •17. Сущность резонанса. Резонанс напряжений. Условия резонанса. Резонансные кривые.
- •18. Выражения для тока и падений напряжения для резонанса напряжений.
- •19. Сущность резонанса. Резонанс токов. Условия резонанса. Резонансные кривые.
- •20. Выражения для токов и падений напряжения для резонанса токов.
- •21. От каких величин зависит значение угла сдвига фаз между напряжением и током?
- •22. Что такое реактивное сопротивление? От каких факторов зависят индуктивное и емкостное сопротивления? Как рассчитать полное сопротивление исследованной цепи?
- •23. Условие резонанса напряжений и токов.
- •28. Напишите формулу для определения активного и реактивного сопротивления приемника, если известны u, I и угол φ.
- •29. Как явление резонанса можно использовать для определения индуктивности?
- •30. Каков порядок построения векторной диаграммы при последовательном включении элементов?
- •31. Как в эксперименте определить активное сопротивление катушки индуктивности? Как определить ее индуктивное сопротивление?
- •36. Как изменить угол сдвига фаз? Как повысить cosφ цепи?
- •37.Как составить баланс мощностей для цепи синусоидальною тока?
9. Активная мощность в цепи переменного тока.
Активная мощность - количество электрической энергии, преобразованной в тепло. Для цепей переменного тока, когда ток и напряжение изменяются по синусоидальному закону с одинаковой частотой, она равна: P=UIcosφ
• Единица активной мощности - ватт (W, Вт).
10. Реактивная мощность индуктивности и емкости.
Реактивная мощность обусловлена способностью реактивных элементов накапливать и отдавать электрическую или магнитную энергию.
Eмкостная нагрузка в цепи переменного тока за время половины периода накапливает заряд в обкладках конденсаторов и отдаёт его обратно в источник. Индуктивная нагрузка накапливает магнитную энергию в катушках и возвращает её в источник питания в виде электрической энергии. Напряжение на выводах реактивного элемента будет достигать максимального значения во время смены направления тока, следовательно, расхождение во времени между напряжением и током в пределах элемента составит четверть периода (сдвиг фаз 90°).
Угол сдвига фаз φ в цепи нагрузки определяется соотношением реактивного и активного сопротивлений нагрузки.
Реактивная мощность характеризует потери, созданные реактивными элементами в цепи переменного тока, и выражается формулой Q = UIsinφ.
11. Полная мощность.
12. Полная мощность в комплексной форме.
Комплексное значение полной мощности, отражающее реальные мощности в цепи, получится, если умножить комплексное значение напряжения на сопряженное комплексное значение тока:
S = UI*.
Сопряженное комплексное значение тока I* отличается от I знаком перед мнимой частью. Если комплексное значение тока I = е в степени (jψ), то сопряженное ему комплексное значение I* = Iев степени (-jψ).
Покажем, что комплексное значение мощности отражает реальные мощности в цепи.
Допустим, что комплексные значения напряжения и тока какой-то цепи имеют выражения
U = Ue в степени (jψ1); I = Ie в степени (jψ2)..
Комплексное значение полной мощности
Выразив комплексное значение полной мощности в тригонометрической, а затем в алгебраической форме, получим
S = S cos φ + jS sin φ = Р + jQ,
где S cos φ = P — активная мощность цепи; S sin φ = Q — реактивная мощность цепи;
S = √р2 +Q2 — полная мощность.
Следует отметить, что при активно-индуктивном характере нагрузки (ψ1 > ψ2) знак перед jQ положительный, при активно-емкостном (ψ2 > ψ1) — отрицательный.
13.Треугольник сопротивлений и мощностей.
14. 1 И 2 законы Кирхгофа в комплексной форме.
По первому закону Кирхгофа, алгебраическая сумма мгновенных значений токов, сходящихся в любом узле схемы, равна нулю:
Равенство не нарушится, если вместо токов подставить соответствующие комплексы. Это и будет выражение для первого закона Кирхгофа в комплексной форме:
где
-
количество ветвей, подходящих к узлу.
По второму закону Кирхгофа, в любом (замкнутом) контуре справедливо равенство алгебраических сумм мгновенных значений напряжений на сопротивлениях контура и ЭДС:
Заменив напряжения и ЭДС на соответствующие комплексы, получим выражение для второго закона Кирхгофа в комплексной форме:
где
-
количество элементов в контуре,
-
количество ЭДС в контуре.
Пример: