
- •1 Основные величины, характеризующие синусоидальную функцию времени. Что такое период и частота?
- •2. Действующее значение синусоидального тока.
- •3. Три формы представления синусоидальных величин.
- •4. Представление синусоидальных величин комплексными числами. Комплексная амплитуда и комплекс действующего значении.
- •5 . Зависимость между током и напряжением для резистивного элемента. Закон Ома в комплексной форме. Векторная диаграмма. Фазовый сдвиг между током и напряжением.
- •6 .Зависимость между током и напряжением для индуктивного элемента. Закон Ома в комплексной форме. Векторная диаграмма. Фазовый сдвиг между током и напряжением.
- •7. Зависимость между током и напряжением для емкостного элемента. Закон Ома в комплексной форме. Векторная диаграмма. Фазовый сдвиг между током и напряжением.
- •8. Основы символического метода расчета цепей переменного тока. Комплексное сопротивление и комплексная проводимость.
- •9. Активная мощность в цепи переменного тока.
- •10. Реактивная мощность индуктивности и емкости.
- •11. Полная мощность.
- •12. Полная мощность в комплексной форме.
- •13.Треугольник сопротивлений и мощностей.
- •14. 1 И 2 законы Кирхгофа в комплексной форме.
- •15. Алгоритм расчета цепи переменного тока с использованием законов Кирхгофа. Приведите пример расчета разветвленной эц.
- •16. Векторные диаграммы.
- •17. Сущность резонанса. Резонанс напряжений. Условия резонанса. Резонансные кривые.
- •18. Выражения для тока и падений напряжения для резонанса напряжений.
- •19. Сущность резонанса. Резонанс токов. Условия резонанса. Резонансные кривые.
- •20. Выражения для токов и падений напряжения для резонанса токов.
- •21. От каких величин зависит значение угла сдвига фаз между напряжением и током?
- •22. Что такое реактивное сопротивление? От каких факторов зависят индуктивное и емкостное сопротивления? Как рассчитать полное сопротивление исследованной цепи?
- •23. Условие резонанса напряжений и токов.
- •28. Напишите формулу для определения активного и реактивного сопротивления приемника, если известны u, I и угол φ.
- •29. Как явление резонанса можно использовать для определения индуктивности?
- •30. Каков порядок построения векторной диаграммы при последовательном включении элементов?
- •31. Как в эксперименте определить активное сопротивление катушки индуктивности? Как определить ее индуктивное сопротивление?
- •36. Как изменить угол сдвига фаз? Как повысить cosφ цепи?
- •37.Как составить баланс мощностей для цепи синусоидальною тока?
5 . Зависимость между током и напряжением для резистивного элемента. Закон Ома в комплексной форме. Векторная диаграмма. Фазовый сдвиг между током и напряжением.
Резистивным называют идеализированный двухполюсный элемент,
для которого связь между напряжением и током можно представить в виде
графика, называемого вольт-амперной характеристикой. Резистивный эле-
мент моделирует процесс необратимого преобразования электромагнитной
энергии в тепло и другие виды энергии, при этом запасание энергии в элек-
тромагнитном поле отсутствует.
Закон Ома в комплексной форме:
I = U/Z,
где Z = r + jxL для цепи, состоящей из последовательно включенных активного r и индуктивного xL сопротивлений; Z = r -- jxC для цепи, состоящей из последовательно включенных активного r и емкостного хC сопротивлений.
Векторная диаграмма — графическое изображение меняющихся по закону синуса (косинуса) величин и соотношений между ними при помощи направленных отрезков — векторов.
Гармоническое (то есть синусоидальное) колебание может быть представлено графически в виде проекции на некоторую ось (обычно берут ось координат Оx) вектора, вращающегося с постоянной угловой скоростью ω. Длина вектора соответствует амплитуде, угол поворота относительно оси (Ox) - фазе.
вариант построения векторной диаграммы (для последовательно соединенных резистора, индуктивности и конденсатора) приведен на рисунке.
фазовый сдвиг φ между напряжением и током равен разности начальных фаз напряжения и тока, т.е.
φ = ψu -ψi .
Если φ >0, то напряжение опережает по фазе ток; если φ <0, то напряжение отстает по фазе от тока (или ток опережает напряжение); если φ =0, то напряжение совпадает по фазе с током.
6 .Зависимость между током и напряжением для индуктивного элемента. Закон Ома в комплексной форме. Векторная диаграмма. Фазовый сдвиг между током и напряжением.
7. Зависимость между током и напряжением для емкостного элемента. Закон Ома в комплексной форме. Векторная диаграмма. Фазовый сдвиг между током и напряжением.
Связь
между током и напряжением на емкостном
элементе
.
Закон Ома в комплексной
форме получаем из формулы для комплексного
сопротивления:
Применение
векторных диаграмм при расчете и
исследовании электрических
цепей переменного тока позволяет
наглядно представлять рассматриваемые
процессы и упрощать производимые
электротехнические расчеты.
Векторные диаграммы являются совокупностью векторов, изображающих действующие синусоидальные ЭДС и токи или их амплитудные значения.
Гармонически изменяющееся напряжение определяется выражением u = Um sin (ωt + ψи).
Угол
фазового сдвига между током и напряжением
равен
.
8. Основы символического метода расчета цепей переменного тока. Комплексное сопротивление и комплексная проводимость.
Метод расчёта цепи, основанный на применении комплексных чисел, называется символическим методом. В символическом методе расчета все реальные параметры электрической цепи заменяют символами в комплексной форме записи. После замены реальных параметров цепи на их комплексные символы расчет цепей переменного тока выполняют методами, которые применяли для расчета цепей постоянного тока. Отличие состоит в том, что все математические операции необходимо выполнять с комплексными числами.
В результате расчета электрической цепи искомые токи и напряжения получаются в виде комплексных чисел. Завершают расчёт цепи переменного тока, как правило, составлением баланса активных и реактивных мощностей, который позволяет проверить правильность вычислений.
Комплексной проводимостью называется отношение комплексного тока к комплексному напряжению
Y=I/U=1/Z=1/(zejj)=ye‑jj=yÐ‑j, (6.31а)
где y=1/z — величина, обратная полному сопротивлению, называется полной проводимостью.
Комплексная проводимость и комплексное сопротивление взаимно обратны. Комплексную проводимость можно представить в виде
Y= ye‑jj=ycosj‑jysinj=g‑jb, (6.31б)
где g=ycosj — действительная часть комплексной проводимости, называется активной проводимостью; b=ysinj — значение мнимой части комплексной проводимости, называется реактивной проводимостью;