Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
дм.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
24.7 Mб
Скачать

5 Косозубые зубчатые передачи. Особенности геометрии и расчёта

Вопросы

отв.

Ответы

5.1 Какие параметры косозубой цилиндриче­ской передачи стандартизованы?

1

2

3

4

Нормальный mn и окружной mt модули

Нормальный модуль mn и межосевое расстояние aw

Числа зубьев колёс z1 и z2

Передаточное число u и числа зубьев z1 и z2

5.2 Укажите основное преимущество косозу­бых передач в сравнении с прямозубыми?

1

2

3

4

Меньшие нагрузки подшипников

Большая плавность зацепления и меньший шум при работе

Большая нагрузочная способность и отсутствие осевых сил в зацеплении

Возможность применения нестандарт­ного инструмента для нарезания зубьев

5.3 Какие разновидности конических колёс с непрямыми зубьями вам известны?

1

2

3

4

С круговыми и тангенциальными

С косыми и радиальными

С синусоидальными и радиальными

С круговыми и синусоидальными

5.4 Какие виды термоупрочнения среднеуг­леродистых сталей типа 40Х, 40ХН, 30ХГС и т.п. используют в производстве зубчатых колёс?

1

2

3

4

Отжиг и нормализацию

Цементацию и азотирование

Отжиг и объёмную закалку

Улучшение и поверхностную закалку

5.5 Какие виды термоупрочнения малоугле­родистых сталей типа 20ХНЗА, 15Х, 18ХГТ и др. используют в производстве зубчатых колёс?

1

2

3

4

Отжиг и объёмную закалку

Цементацию и низкотемпературный от­пуск

Улучшение и поверхностную закалку

Нормализацию и высокотемпературный отжиг

5.6 Какие два шага различают у косозубого цилиндрического колеса?

1

2

3

4

Нормальный pn и торцевой (окружной) pt

Правый pпр и левый pлев

Продольный pпр и поперечный pпоп

Шевронный pш и прямой pпр

5.7 Какие два модуля различают у косозубого цилиндрического колеса?

1

2

3

4

Средний окружной и торцевой

Внешний окружной и внутренний торце­вой

Нормальный и торцевой (окружной)

Стандартный и нестандартный

5.8 Для косозубой цилиндрической передачи составляющие нормальной силы в зацеплении Fn выражаются зависимостями:

- окружная сила Ft = 2T / d

- радиальная сила Fr = Ft tg α / cos β

- осевая сила Fa = Fttg β.

Можно ли использовать эти зависимости для расчёта сил в зацеплении прямозубой передачи?

1

2

3

4

Нельзя, так как отсутствует осевая сила

Можно, если принять стандартный угол α = 20°

Можно, но при отсутствии окружной силы

Можно, если принять β = 0°

5.9 Для косозубого цилиндрического колеса с шириной венца bw, углом наклона зубьев β, числом зубьев z и углом исходного контура α укажите формулу для вычисления числа зубьев zv эквива­лентного прямозубого колеса.

1

2

3

4

zv = bw / cos β

zv = cos β / cos α

zv = z ∙ cos α ∙ cos β

zv = z / cos3β

5.10 Чем объяснить, что для косозубых ци­линдрических колёс угол наклона зубьев β не ре­комендуется брать более 20°, а у шевронных он может достигать 45°?

1

2

3

4

Тем, что у шевронных колёс этот угол делится поровну между полушевронами

Тем, что у шевронных колёс зубья на­клонены в разные стороны

Тем, что шевронные колёса используют в передачах особо большой мощности

Тем, что в косозубой передаче осевые силы, пропорциональные tg β, нагру­жают подшипники, а у шевронной – они на подшипники не передаются

5.11 В формулах для проверки прочности зубьев любого зубчатого колеса при изгибе присут­ствует коэффициент формы зуба УF.

Как его выби­рают из таблицы справочника в случае расчёта ко­созубого колеса с числом зубьев z?

1

2

3

4

В зависимости только от числа зубьев z

В зависимости от нормального модуля mn и числа зубьев z

В зависимости от числа зубьев zv экви­валентного прямозубого колеса

В зависимости от нормального модуля mn и угла наклона зубьев β

1.12 По какой из формул вычисляется число зубьев zv эквивалентного прямозубого колеса, если оно используется при выборе коэффициента формы зуба YF для проверки на прочность при из­гибе зубьев косозубого цилиндрического колеса с такими параметрами: mn – нормальный модуль; bw - ширина венца; β – угол наклона зубьев; z число зубьев?

1

2

3

4

zv = z / cos3β

zv = bw / cos β

zv = z ∙ mn / cos β

zv = z / cos3

5.13 При проверочном расчёте на изгиб зубьев любого конического колеса коэффициент формы зуба УF выбирается не для действительного числа зубьев z конического колеса, а для числа зубьев zv эквивалентного прямозубого цилиндри­ческого колеса.

По какой из формул вычисляется zv для прямозубого конического колеса с внешним окружным модулем mte, числом зубьев z, углом де­лительного конуса δ, шириной венца b?

1

2

3

4

zv = z / cos3 δ

zv = zmte / b

zv = b / mte

zv = z / cos δ

5.14 Каково межосевое расстояние aw изо­бражённой на схеме косозубой цилиндриче­ской передачи с нормальным модулем mn, углом наклона зубьев β, окружным (торцевым) модулем mt и числами зубьев колёс z1 и z2?

1

2

3

4

aw = (z1 + z2)mn / 2cos β

aw = (z1 + z2)mt / 2cos β

aw = (d1 + d2) / 2 + 2mn

aw = (d1 + d2) / 2 + 2,5mt

5.15 Каков габаритный размер А изображён­ной на схеме косозубой зубчатой передачи при числе зубьев её колёс z1 и z2, нормальном модуле mn, окружном модуле mt и угле наклона зубьев β?

1

2

3

4

A = (z1 + z2)· mn / 2 + 2mn

A = (z1 + z2)·mt / 2

A = (z1 + z2) ∙ mn / 2cos β – 2,5mn

A = (z1 + z2) ∙ mt + 2mn

5.16 Зубчатые цилиндрические передачи с зацеплением Новикова имеют зубья, очерченные не эвольвентами, а дугами окружностей. В связи с этим они выполняются

1

2

3

4

Косозубыми и прямозубыми

Только прямозубыми

Прямозубыми и шевронными

Только косозубыми

5.17 В вузовских учебниках известная фор­мула для вычисления межосевого расстояния лю­бой цилиндрической зубчатой передачи начина­ется так: aw = (u ± 1) и т.д.

Ко­гда при проектном расчёте вместо знака ,,плюс" употребляют знак ,,минус"?

1

2

3

4

Если рассчитывают межосевое рас­стояние планетарной передачи

Если рассчитывают передачу с зацеп­лением Новикова

Если рассчитывают межосевое рас­стояние шевронной передачи

Если рассчитывают межосевое рас­стояние передачи с внутренним зацеп­лением

5.18 У работающей передачи между впади­нами зубьев одного колеса и головками зубьев дру­гого должен быть зазор c. Какова номинальная ве­личина этого зазора для косозубой цилиндрической передачи с нормальным модулем mn, углом на­клона зубьев β, числами зубьев z1 и z2, торцевым модулем mt?

1

2

3

4

c = (mn – mt)cos β

c = (z2 – z1)mt / mn

c = 0,25mn / cos β

c = 0,25mn

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]